The SMARCA4 (also known as BRG1 in humans) chromatin remodeling factor is critical for establishing lineage-specific chromatin states during early mammalian development. However, the role of SMARCA4 in tissue-specific gene regulation during embryogenesis remains poorly defined. To investigate the genome-wide binding landscape of SMARCA4 in differentiating tissues, we engineered a Smarca4(FLAG) knock-in mouse line. Using ChIP-seq, we identified ∼51,000 SMARCA4-associated regions across six embryonic mouse tissues (forebrain, hindbrain, neural tube, heart, limb, and face) at mid-gestation (E11.5). The majority of these regions was distal from promoters and showed dynamic occupancy, with most distal SMARCA4 sites (73%) confined to a single or limited subset of tissues. To further characterize these regions, we profiled active and repressive histone marks in the same tissues and examined the intersection of informative chromatin states and SMARCA4 binding. This revealed distinct classes of distal SMARCA4-associated elements characterized by activating and repressive chromatin signatures that were associated with tissue-specific up- or down-regulation of gene expression and relevant active/repressed biological pathways. We further demonstrate the predicted active regulatory properties of SMARCA4-associated elements by retrospective analysis of tissue-specific enhancers and direct testing of SMARCA4-bound regions in transgenic mouse assays. Our results indicate a dual active/repressive function of SMARCA4 at distal regulatory sequences in vivo and support its role in tissue-specific gene regulation during embryonic development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032856 | PMC |
http://dx.doi.org/10.1101/gr.168930.113 | DOI Listing |
Sci Rep
December 2024
Division of Cancer Therapeutics, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
Mutation of genes related to the SWI/SNF chromatin remodeling complex is detected in 20% of all cancers. The SWI/SNF chromatin remodeling complex comprises about 15 subunits and is classified into three subcomplexes: cBAF, PBAF, and ncBAF. Previously, we showed that ovarian clear cell carcinoma cells deficient in ARID1A, a subunit of the cBAF complex, are synthetic lethal with several genes required for glutathione (GSH) synthesis and are therefore sensitive to the GSH inhibitor eprenetapopt (APR-246).
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China. Electronic address:
Mammalian SWI/SNF (mSWI/SNF) ATP-dependent chromatin remodeling complexes play critical roles in regulating gene expression and DNA accessibility, and more than 20 % of cancers have mutations in genes encoding chromatin remodeling complexes. The mSWI/SNF family comprises three distinct classes: canonical BAF (cBAF), PBAF, and non-canonical BAF (ncBAF). While the structures of cBAF and PBAF have been resolved by using cryo-electron microscopy (cryo-EM), the modular organization and assembly mechanism of ncBAF remain poorly understood.
View Article and Find Full Text PDFLab Invest
January 2025
Department of Pathology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
About 20% of human cancers harbor mutations of genes encoding switch/sucrose nonfermentable (SWI/SNF) complex subunits. Deficiency of subunits of the complex is present in 10% of non-small-cell lung cancers (NSCLC; SMARCA4/SMARCA2 deficient), 100% thoracic SMARCA4/A2-deficient undifferentiated tumors (TSADUDT; SMARCA4/A2 deficient), malignant rhabdoid tumor, and atypical/teratoid tumor (SMARCB1-deficient), >90% of small cell carcinoma of the ovary, hypercalcemic type (SMARCA4/SMARCA2 deficient), frequently in undifferentiated/dedifferentiated endometrial carcinoma (SMARCA4, SMARCA2, SMARCB1, and ARID1A/B deficient), 100% SMARCA4 deficient undifferentiated uterine sarcoma (SMARCA4 deficient); and in various other tumors from multifarious anatomical sites. Silencing of SWI/SNF gene expression may be genomically or epigenetically driven, causing loss of tumor suppression function or facilitating other oncogenic events.
View Article and Find Full Text PDFCancer Med
November 2024
Department of Urology, Daping Hospital, Army Medical University, Chongqing, People's Republic of China.
Cell Death Dis
November 2024
Department of Thoracic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
Polycomb repressive complex 2 (PRC2) catalyzes the writing of the tri-methylated histone H3 at Lys27 (H3K27me3) epigenetic marker and suppresses the expression of genes, including tumor suppressors. The function of the complex can be partially antagonized by the SWI/SNF chromatin-remodeling complex. Previous studies have suggested that PRC2 is important for the proliferation of tumors with SWI/SNF loss-of-function mutations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!