GlycoDelete engineering of mammalian cells simplifies N-glycosylation of recombinant proteins.

Nat Biotechnol

1] Unit for Medical Biotechnology, Inflammation Research Center (IRC), VIB, Ghent, Belgium. [2] Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.

Published: May 2014

Heterogeneity in the N-glycans on therapeutic proteins causes difficulties for protein purification and process reproducibility and can lead to variable therapeutic efficacy. This heterogeneity arises from the multistep process of mammalian complex-type N-glycan synthesis. Here we report a glycoengineering strategy--which we call GlycoDelete--that shortens the Golgi N-glycosylation pathway in mammalian cells. This shortening results in the expression of proteins with small, sialylated trisaccharide N-glycans and reduced complexity compared to native mammalian cell glycoproteins. GlycoDelete engineering does not interfere with the functioning of N-glycans in protein folding, and the physiology of cells modified by GlycoDelete is similar to that of wild-type cells. A therapeutic human IgG expressed in GlycoDelete cells had properties, such as reduced initial clearance, that might be beneficial when the therapeutic goal is antigen neutralization. This strategy for reducing N-glycan heterogeneity on mammalian proteins could lead to more consistent performance of therapeutic proteins and modulation of biopharmaceutical functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7039703PMC
http://dx.doi.org/10.1038/nbt.2885DOI Listing

Publication Analysis

Top Keywords

glycodelete engineering
8
mammalian cells
8
therapeutic proteins
8
mammalian
5
cells
5
proteins
5
therapeutic
5
glycodelete
4
engineering mammalian
4
cells simplifies
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!