Background: Ribavirin (RBV) remains part of several interferon-free treatment strategies even though its mechanisms of action are still not fully understood. One hypothesis is that RBV increases responsiveness to type I interferons. Pegylated Interferon alpha (PEG-IFNa) has recently been shown to alter natural killer (NK) cell function possibly contributing to control of hepatitis C virus (HCV) infection. However, the effects of ribavirin alone or in combination with IFNa on NK cells are unknown.
Methods: Extensive ex vivo phenotyping and functional analysis of NK cells from hepatitis C patients was performed during antiviral therapy. Patients were treated for 6 weeks with RBV monotherapy (n = 11), placebo (n = 13) or PEG-IFNa-2a alone (n = 6) followed by PEG-IFNa/RBV combination therapy. The effects of RBV and PEG-IFNa-2a on NK cells were also studied in vitro after co-culture with K562 or Huh7.5 cells.
Results: Ribavirin monotherapy had no obvious effects on NK cell phenotype or function, neither ex vivo in patients nor in vitro. In contrast, PEG-IFNa-2a therapy was associated with an increase of CD56bright cells and distinct changes in expression profiles leading to an activated NK cell phenotype, increased functionality and decline of terminally differentiated NK cells. Ribavirin combination therapy reduced some of the IFN effects. An activated NK cell phenotype during therapy was inversely correlated with HCV viral load.
Conclusions: PEG-IFNa activates NK cells possibly contributing to virological responses independently of RBV. The role of NK cells during future IFN-free combination therapies including RBV remains to be determined.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3994015 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0094512 | PLOS |
J Vis Exp
January 2025
State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University;
The extent of functional sequences within the human genome is a pivotal yet debated topic in biology. Although high-throughput reverse genetic screens have made strides in exploring this, they often limit their scope to known genomic elements and may introduce non-specific effects. This underscores the urgent need for novel functional genomics tools that enable a deeper, unbiased understanding of genome functionality.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University;
Umbilical cord-derived mesenchymal stromal/stem cells (UC-MSCs) present low immunogenicity and potent immunomodulatory effects for treating various diseases. Human UC-MSCs are a heterogeneous population consisting of three main subpopulations with different cell shapes, proliferation rates, differentiation abilities, and immune regulatory functions. Previously, BAMBIMFGE8 UC-MSCs, the first subgroup successfully isolated from UC-MSCs were found to fail to alleviate lupus nephritis.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China.
Microglia-mediated neuroinflammation plays a crucial role in Alzheimer's disease (AD). Tinosinenside A (Tis A) is a novel sesquiterpene glycoside isolated from the dried rattan stem of Tinospora sinensis (Lour.) Merr.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
Renal fibrosis is a common pathological process in various chronic kidney diseases. The accumulation of senescent renal tubular epithelial cells (TECs) in renal tissues plays an important role in the development of renal fibrosis. Eliminating senescent TECs has been proven to effectively reduce renal fibrosis.
View Article and Find Full Text PDFHepatol Commun
February 2025
University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France.
Background: Hepatitis B is a liver infection caused by HBV. Infected individuals who fail to control the viral infection develop chronic hepatitis B and are at risk of developing life-threatening liver diseases, such as cirrhosis or liver cancer. Dendritic cells (DCs) play important roles in the immune response against HBV but are functionally impaired in patients with chronic hepatitis B.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!