Background & Aims: Peroxisome proliferator-activated receptor alpha (PPARα) is a key regulator of hepatic fat oxidation that serves as an energy source during starvation. Vanin-1 has been described as a putative PPARα target gene in liver, but its function in hepatic lipid metabolism is unknown.
Methods: We investigated the regulation of vanin-1, and total vanin activity, by PPARα in mice and humans. Furthermore, the function of vanin-1 in the development of hepatic steatosis in response to starvation was examined in Vnn1 deficient mice, and in rats treated with an inhibitor of vanin activity.
Results: Liver microarray analyses reveals that Vnn1 is the most prominently regulated gene after modulation of PPARα activity. In addition, activation of mouse PPARα regulates hepatic- and plasma vanin activity. In humans, consistent with regulation by PPARα, plasma vanin activity increases in all subjects after prolonged fasting, as well as after treatment with the PPARα agonist fenofibrate. In mice, absence of vanin-1 exacerbates the fasting-induced increase in hepatic triglyceride levels. Similarly, inhibition of vanin activity in rats induces accumulation of hepatic triglycerides upon fasting. Microarray analysis reveal that the absence of vanin-1 associates with gene sets involved in liver steatosis, and reduces pathways involved in oxidative stress and inflammation.
Conclusions: We show that hepatic vanin-1 is under extremely sensitive regulation by PPARα and that plasma vanin activity could serve as a readout of changes in PPARα activity in human subjects. In addition, our data propose a role for vanin-1 in regulation of hepatic TG levels during fasting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhep.2014.04.013 | DOI Listing |
Anal Chem
January 2025
College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China.
Vanin-1 is a pantetheine hydrolase that plays a key role in inflammatory diseases. Effective tools for noninvasive, real-time monitoring of Vanin-1 are lacking, largely due to background fluorescence interference in existing probes. To address this issue, we developed a dual-modal fluorescent and colorimetric probe, MB-Van1, to detect Vanin-1 with high sensitivity and selectivity.
View Article and Find Full Text PDFAnal Chem
November 2024
Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, Jiangsu, China.
The development of precise diagnosis and the discovery of individualized drugs go together to provide effective therapy against inflammatory bowel disease (IBD). The exploitation of the unique imaging advantages of chemiluminescent probes represents a pivotal strategy for achieving this goal. Nevertheless, the dual-locked strategy, which is believed to enhance precision, is rarely employed in the design of chemiluminescent probes.
View Article and Find Full Text PDFJ Med Chem
November 2024
Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.
Inflammatory bowel disease (IBD) is a clinically heterogeneous disease demanding more therapeutic targets and intervention strategies. Vanin-1, an oxidative stress-regulating protein, has emerged as a promising target for alleviating inflammation and oxidative stress. In this study, a series of thiazole carboxamide derivatives as vanin-1 inhibitors were designed and synthesized.
View Article and Find Full Text PDFFoods
September 2024
Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil.
Food waste is a significant concern when it comes to food safety. It is a well-known fact that fruit and vegetable wastage is high worldwide; however, quantitative data, especially on such waste in the retail sector, are limited. Wasted vegetables are sources of essential dietary compounds, benefiting from their revalorization.
View Article and Find Full Text PDFACS Sens
October 2024
Department of Nanotechnology, State Research Institute Centre for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius 10257, Lithuania.
Pantetheinase is a key biomarker for the diagnosis of acute kidney injury and the monitoring of malaria progression. Currently, existing methods for sensing pantetheinase, also known as Vanin-1, show considerable potential but come with certain limitations, including their inability to directly sense analytes in turbid biofluid samples without tedious sample pretreatment. Here, we describe the first activity-based electrochemical probe, termed VaninLP, for convenient and specific direct targeting of pantetheinase activity in turbid liquid biopsy samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!