Background/aims: Erythropoietin-resistance is an unsolved concern in the treatment of renal anaemia. We aimed to investigate the possible role of ortho- and meta-tyrosine - the hydroxyl free radical products of L-phenylalanine - in the development of erythropoietin-resistance.
Methods: TF-1 erythroblast cell line was used. Cell concentration was determined on day 1; 2 and 3 by two independent observers simultaneously in Bürker cell counting chambers. Protein concentration was determined with colorimetric method. Para-, ortho- and meta-tyrosine levels were measured using reverse phase-HPLC with fluorescence detection. Using Western blot method activating phosphorylation of STAT5 and ERK1/2 were investigated.
Results: We found a time- and concentration-dependent decrease of erythropoietin-induced proliferative activity in case of ortho- and meta-tyrosine treated TF-1 erythroblasts, compared to the para-tyrosine cultured cells. Decreased erythropoietin-response could be regained with a competitive dose of para-tyrosine. Proteins of erythroblasts treated by ortho- or meta-tyrosine had lower para-tyrosine and higher ortho- or meta-tyrosine content. Activating phosphorylation of ERK and STAT5 due to erythropoietin was practically prevented by ortho- or meta-tyrosine treatment.
Conclusion: According to this study elevated ortho- and meta-tyrosine content of erythroblasts may lead to the dysfunction of intracellular signaling, resulting in erythropoietin-hyporesponsiveness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000355770 | DOI Listing |
Pediatr Res
October 2023
Department of Pediatrics, Division of Neonatology, University Hospitals Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA.
Background: Intermittent hypoxemia (IH) events are common in preterm neonates and are associated with adverse outcomes. Animal IH models can induce oxidative stress. We hypothesized that an association exists between IH and elevated peroxidation products in preterm neonates.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2022
2nd Department of Medicine and Nephrology-Diabetes Centre, University of Pécs Medical School, H-7624 Pécs, Hungary.
In diseases with concomitant oxidative stress, chronic multi-hormonal resistances could be detected. The most conspicuous component of these resistances is insulin resistance, but also leptin, erythropoietin, acetylcholine, triiodothyronine and glucagon-like peptide-1 resistances also occur. On the other hand, in oxidative stress, abnormal tyrosines, for instance, meta- and ortho-tyrosine are also produced and incorporated into the proteins through the translational process.
View Article and Find Full Text PDFBiomedicines
April 2022
2nd Department of Medicine and Nephrology-Diabetes Center, University of Pécs Medical School, 7624 Pécs, Hungary.
A link between oxidative stress and insulin resistance has been suggested. Hydroxyl free radicals are known to be able to convert phenylalanine (Phe) into the non-physiological tyrosine isoforms ortho- and meta-tyrosine (o-Tyr, m-Tyr). The aim of our study was to examine the role of o-Tyr and m-Tyr in the development of insulin resistance.
View Article and Find Full Text PDFJ Clin Lab Anal
February 2021
Doctoral School of Health Sciences, Faculty of Health Science, University of Pécs, Pécs, Hungary.
Background: Under conditions of oxidative stress, hydroxyl radicals can oxidize phenylalanine (Phe) into various tyrosine (Tyr) isomers (meta-, ortho-, and para-tyrosine; m-, o-, and p-Tyr), depending on the location of the hydroxyl group on the oxidized benzyl ring. This study aimed to compare patients with ST-segment elevation myocardial infarction (STEMI) and non-STEMI (NSTEMI) and the serum levels of Phe and Tyr isomers at the aortic root and distal to the culprit lesion in both groups.
Methods: Forty-four patients participated in the study: 23 with STEMI and 21 with NSTEMI.
Ageing Res Rev
May 2016
Center for Healthy Aging, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States; Department of Medicine, Division of Geriatrics, Gerontology, and Palliative Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States; GRECC, South Texas VA Health Care System, San Antonio, TX, United States. Electronic address:
The damage to cellular components by reactive oxygen species, termed oxidative stress, both increases with age and likely contributes to age-related diseases including Alzheimer's disease, atherosclerosis, diabetes, and cataract formation. In the setting of oxidative stress, hydroxyl radicals can oxidize the benzyl ring of the amino acid phenylalanine, which then produces the abnormal tyrosine isomers meta-tyrosine or ortho-tyrosine. While elevations in m-tyrosine and o-tyrosine concentrations have been used as a biological marker of oxidative stress, there is emerging evidence from bacterial, plant, and mammalian studies demonstrating that these isomers, particularly m-tyrosine, directly produce adverse effects to cells and tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!