A role for the regulator PsrA in the polyhydroxyalkanoate metabolism of Pseudomonas putida KT2440.

Int J Biol Macromol

Environmental Biology Department, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain. Electronic address:

Published: November 2014

Pseudomonas putida KT2440 is a Gram-negative bacterium capable of producing medium-chain-length-polyhydroxyalkanoates (mcl-PHA). When fatty acids are used as growth and polymer precursors, the biosynthesis is linked to fatty acid metabolism via ß-oxidation route. In the close-related Pseudomonas aeruginosa, the transcriptional repressor PsrA regulates the ß-oxidation, but little is known about the regulatory system in P. putida. To analyze the effect of the absence of psrA gene on the growth and PHA production in P. putida, a set of different carbon sources were assayed in the wild type strain and in a generated psrA deficient strain (KT40P). The growth rates were in all cases, lower for the mutant. The amount of PHA produced by the mutant strain is lower than the wild type. Moreover, the monomeric composition seems to be different among the strains, as there is enrichment in monomers with shorter carbon length in the mutant strain. To understand the role of the psrA gene on the metabolism of fatty acids, we have determined the expression profile of several genes related to fatty acid metabolism in the wild type and in the mutant strain. The results indicated that PsrA mostly negatively regulate genes related to fatty acid metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2014.04.014DOI Listing

Publication Analysis

Top Keywords

fatty acid
12
acid metabolism
12
wild type
12
mutant strain
12
pseudomonas putida
8
putida kt2440
8
fatty acids
8
psra gene
8
genes fatty
8
psra
6

Similar Publications

Sickle cell anemia (SCA) is a monogenic blood disease with complex and multifactorial pathophysiology. The endocannabinoid system (ECS) could be a candidate for modulating SCA complications, such as priapism, as it has demonstrated an essential role in hematopoiesis, platelet aggregation, and immune responses. We evaluated the association of ECS-related single nucleotide polymorphisms (SNP) (FAAH rs324420, MAGL rs604300, CNR1 rs7766029, and CNR2 rs35761398) with priapism in a Brazilian SCA cohort.

View Article and Find Full Text PDF

Effector proteins secreted via the type III secretion system (T3SS) of nitrogen-fixing rhizobia are key determinants of symbiotic compatibility in legumes. Previous report revealed that the T3SS of Bradyrhizobium sp. DOA9 plays negative effects on Arachis hypogaea symbiosis.

View Article and Find Full Text PDF

Medium- and long-chain triacylglycerols (MLCTs) are regarded as healthy premium oils; however, the health benefits of novel MLCTs enriched with lauric and α-linolenic acids are still not fully understood. This study examined the health benefits of lauric-α-linolenic structural lipids (ALSL) and physical mixture (PM) with a similar fatty acid composition in mice with obesity induced by the high-fat diet (HFD). The data indicated that ALSL is more effective than PM in counteracting obesity, insulin resistance, hyperlipidaemia, liver injury, and systemic inflammation in HFD-induced mice.

View Article and Find Full Text PDF

E-cigarette/vaping-associated lung injury (EVALI) is strongly associated with vitamin E acetate and often occurs with concomitant tetrahydrocannabinol (THC) use. To uncover pathways associated with EVALI, we examined cytokines, transcriptomic signatures, and lipidomic profiles in bronchoalveolar lavage fluid (BALF) from THC-EVALI patients. At a single center, we prospectively enrolled mechanically ventilated patients with EVALI from THC-containing products (N = 4) and patients with non-vaping acute lung injury and airway controls (N = 5).

View Article and Find Full Text PDF

The potential for mitigating intestinal inflammation through the gut-bone axis in the treatment of osteoporosis is significant. While various gut-derived postbiotics or bacterial metabolites have been created as dietary supplements to prevent or reverse bone loss, their efficacy and safety still need improvement. Herein, a colon-targeted drug delivery system is developed using surface engineering of polyvinyl butyrate nanoparticles by shellac resin to achieve sustained release of postbiotics butyric acid at the colorectal site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!