In this paper, some key parameters, such as the system pH, the periodate concentration, and the reaction temperature, on the influence of the bagasse fiber degradation were studied based on the oxygenant of periodate. And the feasible reaction mechanism was also discussed through the FTIR characterization for bagasse fiber before and after the oxidizing reaction. As the results shown, the crystallinity of bagasse fiber decreased with the oxidation level increasing. It was interesting that the aldehyde content of the reaction system rose gradually along with cellulose degradation. Based on this result, the selective oxidation kinetics was constructed by introducing of variable factor R (the ratio of aldehyde content to the degradation of cellulose fiber), and the results shown that there was a better correlation between the dynamic model and the experimental data, so the oxidation degree of bagasse fiber oxidized by periodate can be quantitative evaluated based on this model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2012.05.027 | DOI Listing |
Microorganisms
January 2025
Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. General Ramón Corona 2514, Zapopan 45138, Mexico.
The demand for healthier snack options has driven innovation in frozen dairy products. This study developed and characterized novel frozen dairy snacks fermented with probiotics ( LA5; GG, and BIOTEC003) and containing 2% blueberry bagasse. Four formulations (LA5, LGG, LA5-BERRY, and LGG-BERRY) were analyzed for their nutritional, physicochemical, functional, and sensory properties.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510000, China.
Degradable and cost-effective cellulose fiber-based materials are ideal substitutes for traditional plastics. However, organic additives used to enhance water and oil resistance often contain toxic substances that may migrate into food, posing health risks. In this study, inspired by tree structures, lignin-containing cellulose nanofibers (LCNFs) are used to form a "crown-roots" structure to enhance the water, oil, and gas resistance, as well as mechanical performance of composites.
View Article and Find Full Text PDFJ Fungi (Basel)
November 2024
Dipartmento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, 90133 Palermo, Italy.
The complex structure of the plant cell wall makes it difficult to use the biomass produced by biosynthesis. For this reason, the search for new strains of microorganisms capable of efficiently degrading fiber is a topic of interest. For these reasons, the present study aimed to evaluate both the microbiological and enzymatic characteristics of the fungus L7strain.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:
Sci Prog
January 2024
Faculty of Infrastructural Engineering-Technology, MienTrung University of Civil Engineering (MUCE),Tuy Hoa City, Phu Yen Province, Vietnam.
This study aims to explore the feasibility of replacing traditional components, such as Portland cement, river sand and tap water with sugarcane bagasse ash (SCBA), polypropylene (PP) fibers, and sea sand-seawater (SSSW) in lightweight foamed concrete (LWFC) production. SCBA was used in the range from 0 to 15% as cement replacement, and PP fibers were used with dosage from 0% to 1% by volume of LWFC. Meanwhile, SSSW was used to completely replace river sand and tap water.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!