Differential effects of genetically distinct mechanisms of elevating amylose on barley starch characteristics.

Carbohydr Polym

CSIRO Food Futures National Research Flagship, GPO Box 1600, Canberra, ACT 2601, Australia; CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia.

Published: July 2012

The relationships between starch structure and functionality are important in underpinning the industrial and nutritional utilisation of starches. In this work, the relationships between the biosynthesis, structure, molecular organisation and functionality have been examined using a series of defined genotypes in barley with low (<20%), standard (20-30%), elevated (30-50%) and high (>50%) amylose starches. A range of techniques have been employed to determine starch physical features, higher order structure and functionality. The two genetic mechanisms for generating high amylose contents (down-regulation of branching enzymes and starch synthases, respectively) yielded starches with very different amylopectin structures but similar gelatinisation and viscosity properties driven by reduced granular order and increased amylose content. Principal components analysis (PCA) was used to elucidate the relationships between genotypes and starch molecular structure and functionality. Parameters associated with granule order (PC1) accounted for a large percentage of the variance (57%) and were closely related to amylose content. Parameters associated with amylopectin fine structure accounted for 18% of the variance but were less closely aligned to functionality parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2012.04.054DOI Listing

Publication Analysis

Top Keywords

structure functionality
12
amylose content
8
functionality parameters
8
parameters associated
8
amylose
5
starch
5
structure
5
functionality
5
differential effects
4
effects genetically
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!