VSL#3 probiotic treatment decreases bacterial translocation in rats with carbon tetrachloride-induced cirrhosis.

Liver Int

Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain.

Published: March 2015

Background & Aims: Probiotics can prevent pathological bacterial translocation in cirrhosis by modulating intestinal microbiota and improving gut barrier and immune disturbances. To evaluate the effect of probiotic VSL#3 on bacterial translocation, intestinal microbiota, gut barrier and inflammatory response in rats with experimental cirrhosis.

Methods: Forty-six Sprague-Dawley rats with CCl4 -induced cirrhosis were randomized into two groups: VSL#3 group (n = 22) that received VSL#3 in drinking water, and water group (n = 24) that received water only. Treatment began at week 6 of cirrhosis induction and continued until laparotomy, performed 1 week after development of ascites or at week 20. A control group included 11 healthy rats. At this study end, we evaluated bacterial translocation, intestinal flora, intestinal barrier (ileal claudin-2 and 4, β-defensin-1, occludin and malondialdehyde as index of oxidative damage) and serum cytokines.

Results: Mortality during this study was similar in the VSL#3 group (10/22, 45%) and the water group (10/24, 42%) (P = 1). The incidence of bacterial translocation was 1/12 (8%) in the VSL#3 group, 7/14 (50%) in the water group (P = 0.03 vs. VSL#3 group) and 0/11 in the control group (P = 0.008 vs. water group). The concentration of ileal and caecal enterobacteria and enterococci was similar in the two groups of cirrhotic rats. The ileal occludin concentration was higher and ileal malondialdehyde and serum levels of TNF-α were lower in the VSL#3 group than in the water group (P < 0.05).

Conclusions: VSL#3 decreases bacterial translocation, the pro-inflammatory state and ileal oxidative damage and increases ileal occludin expression in rats with experimental cirrhosis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/liv.12566DOI Listing

Publication Analysis

Top Keywords

bacterial translocation
24
vsl#3 group
20
water group
20
group
12
vsl#3
9
decreases bacterial
8
intestinal microbiota
8
gut barrier
8
translocation intestinal
8
rats experimental
8

Similar Publications

Disturbances of the intestinal barrier enabling bacterial translocation exacerbate alcoholic liver disease (ALD). GG (LGG) has been shown to exert beneficial effects in gut dysbiosis and chronic liver disease. The current study assessed the combined effects of LGG and metformin, which play roles in anti-inflammatory and immunoregulatory processes, in alcohol-induced liver disease mice.

View Article and Find Full Text PDF

Some marine and extremophilic microorganisms are capable of synthesizing sulfated polysaccharides with a unique structure. A number of studies indicate significant biological properties of individual sulfated polysaccharides, such as antiproliferative activity, which makes them a promising area for further research. In this study, the capsular polysaccharide (CPS) was obtained from the bacterium KMM 1449, isolated from a marine sediment sample collected along the shore of the Sea of Japan.

View Article and Find Full Text PDF

Progressive systemic inflammation precedes decompensation in compensated cirrhosis.

JHEP Rep

February 2025

Department of Gastroenterology and Hepatology, Hospital Universitario Ramón y Cajal, Instituto Ramon y Cajal de Investigación Sanitaria (IRYCIS), Universidad de Alcalá, Madrid, Spain.

Background & Aims: Systemic inflammation is a driver of decompensation in cirrhosis with unclear relevance in the compensated stage. We evaluated inflammation and bacterial translocation markers in compensated cirrhosis and their dynamics in relation to the first decompensation.

Methods: This study is nested within the PREDESCI trial, which investigated non-selective beta-blockers for preventing decompensation in compensated cirrhosis and clinically significant portal hypertension (CSPH: hepatic venous pressure gradient ≥10 mmHg).

View Article and Find Full Text PDF

Probing the properties of PTEN specific botulinum toxin type E mutants.

J Neural Transm (Vienna)

January 2025

Institut für Zellbiochemie, OE 4310, Medizinische Hochschule Hannover, 30623, Hannover, Germany.

Botulinum neurotoxins (BoNT) are established biopharmaceuticals for neuromuscular and secretory conditions based on their ability to block neurotransmitter release from neurons by proteolyzing specific soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. Recently, a mutant catalytic domain of serotype E (LC/E) exhibiting 16 mutations was reported to cleave the phosphatase and tensin homolog (PTEN). This molecule represents an attractive new target in neurons as several reports support PTEN knockdown as a strategy to stimulate axonal regeneration after injury.

View Article and Find Full Text PDF

Impairment of the intestinal barrier allows the systemic translocation of commensal bacteria, inducing a proinflammatory state in the host. Here, we investigated innate immune responses following increased gut permeability upon administration of dextran sulfate sodium (DSS) in mice. We found that Enterococcus faecalis translocated to the bone marrow following DSS treatment and induced trained immunity (TI) hallmarks in bone-marrow-derived mouse macrophages and human monocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!