Objectives: The immune trypanolysis test (TL) is an accurate sero-diagnostic tool increasingly implemented for sleeping sickness medical surveillance, but it is restricted to the reference laboratories. To facilitate storage and transport of the test specimen, we developed a protocol for the examination of blood spotted on filter paper (TL-fp) that can be stored and shipped at ambient temperature. We compared its performance with the classical TL on plasma (TL-pl) that needs to be kept frozen until use.

Methods: The study was conducted in active foci of the Republic of Guinea. In total, 438 specimens from treated and untreated sleeping sickness patients and serological suspects were tested with both methods.

Result: TL-fp gave significantly less positive results than TL-pl, but all the confirmed sleeping sickness cases were positive with the TL-fp protocol.

Conclusion: TL-fp appears to offer a good compromise between feasibility and sensitivity to detect currently infected subjects who play a role in the transmission of Trypanosoma brucei gambiense and is useful for contributing to the elimination of gambiense sleeping sickness.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tmi.12316DOI Listing

Publication Analysis

Top Keywords

sleeping sickness
20
immune trypanolysis
8
trypanolysis test
8
blood spotted
8
spotted filter
8
filter paper
8
sleeping
5
sickness
5
test blood
4
paper epidemiological
4

Similar Publications

Human African trypanosomiasis (HAT) is one of the most lethal of the neglected tropical diseases. While the discovery of a novel antitrypanosomal drug is highly desired, the creation of a superior lead compound is challenging. Herein we report ukabamide (), which was isolated from a marine sp.

View Article and Find Full Text PDF

Background: Obesity is associated with an increased risk of aortic diseases and operative risks. Currently, there are no effective drugs available to prevent the occurrence and progression of aortic aneurysms or dissections. We investigated potential biomarkers and therapeutic targets using a multi-omics approach.

View Article and Find Full Text PDF

RNA-specific nucleotidyltransferases (rNTrs) add nontemplated nucleotides to the 3 end of RNA. Two noncanonical rNTRs that are thought to be poly(A) polymerases (PAPs) have been identified in the mitochondria of trypanosomes - KPAP1 and KPAP2. KPAP1 is the primary polymerase that adds adenines (As) to trypanosome mitochondrial mRNA 3 tails, while KPAP2 is a non-essential putative polymerase whose role in the mitochondria is ambiguous.

View Article and Find Full Text PDF

Conflicts within the tsetse fly belt revealed a strong correlation between the dynamics of bovine trypanosomosis and the insurgency involving farmers and herders in Nigeria and parts of West Africa. This study examined the history, causes and influence of farmers-herdsmen conflicts on banditry, terrorism and food security as it relates to the epidemiology of African animal trypanosomosis (AAT). A combination of literature database searches, semi-structured questionnaires, and mathematical modeling was employed.

View Article and Find Full Text PDF

A murine model of induced myocarditis and cardiac dysfunction.

Microbiol Spectr

January 2025

Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA.

Unlabelled: is a protozoan parasite that causes human and animal African trypanosomiases (HAT and AAT). Cardiac symptoms are commonly reported in HAT patients, and intracardiac parasites with accompanying myocarditis have been observed in both natural hosts and animal models of infection. Despite the importance of as a cause of cardiac dysfunction and the dramatic socioeconomic impact of African trypanosomiases in sub-Saharan Africa, there are currently no reproducible murine models of associated cardiomyopathy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!