Glucose-6-phosphatase catalytic subunit 3 (G6PC3) deficiency is a newly described syndrome characterized by severe congenital neutropenia associated with multiple organ abnormalities including cardiac and urogenital malformations. The underlying pathophysiology of increased apoptosis of myeloid cells and of neutrophil dysfunction in G6PC3 deficiency involves disturbed glucose metabolism, increased endoplasmic reticulum stress and deficient protein folding. Here, we report a new case of G6PC3 deficiency caused by a novel homozygous G6PC3 gene mutation p.Trp59Arg. The patient showed pancytopenia and a variable bone marrow phenotype with maturation arrest and vacuolization in myeloid lineage cells and a normocellular marrow, respectively. She also showed persistent lymphopenia with low CD4 T- and CD19 B-cell counts. Lymphopenia and even pancytopenia as well as a variable bone marrow phenotype can be part of this syndrome. These clinical findings in a patient with chronic neutropenia should alert the clinician to consider a diagnosis of G6PC3 deficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ejh.12349 | DOI Listing |
J Clin Immunol
December 2024
Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
G6PC3 deficiency is a monogenic immunometabolic disorder that causes severe congenital neutropenia type 4. Patients display heterogeneous extra-hematological manifestations, contributing to delayed diagnosis. Here, we investigated the origin and functional consequence of the G6PC3 c.
View Article and Find Full Text PDFActa Biochim Biophys Sin (Shanghai)
October 2024
Meiosis, a process unique to germ cells, involves formation and repair of double-stranded nicks in DNA, pairing and segregation of homologous chromosomes, which ultimately achieves recombination of homologous chromosomes. Genetic abnormalities resulted from defects in meiosis are leading causes of infertility in humans. Meiotic sex chromosome inactivation (MSCI) plays a crucial role in the development of male germ cells in mammals, yet its underlying mechanisms remain poorly understood.
View Article and Find Full Text PDFRes Sq
July 2024
Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center.
G6PC3 deficiency is a monogenic immunometabolic disorder that causes syndromic congenital neutropenia. Patients display heterogeneous extra-hematological manifestations, contributing to delayed diagnosis. Here, we investigated the origin and functional consequence of the c.
View Article and Find Full Text PDFJAAD Case Rep
July 2024
Department of Medicine, Université de Montréal, Montréal, Canada.
medRxiv
May 2024
Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
Background: G6PC3 deficiency is a rare genetic disorder that causes syndromic congenital neutropenia. It is driven by the intracellular accumulation of a metabolite named 1,5-anhydroglucitol-6-phosphate (1,5-AG6P) that inhibits glycolysis. Patients display heterogeneous extra-hematological manifestations, contributing to delayed diagnosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!