Providing partial respiratory assistance by removing carbon dioxide (CO2 ) can improve clinical outcomes in patients suffering from acute exacerbations of chronic obstructive pulmonary disease and acute respiratory distress syndrome. An intravenous respiratory assist device with a small (25 Fr) insertion diameter eliminates the complexity and potential complications associated with external blood circuitry and can be inserted by nonspecialized surgeons. The impeller percutaneous respiratory assist catheter (IPRAC) is a highly efficient CO2 removal device for percutaneous insertion to the vena cava via the right jugular or right femoral vein that utilizes an array of impellers rotating within a hollow-fiber membrane bundle to enhance gas exchange. The objective of this study was to evaluate the effects of new impeller designs and impeller spacing on gas exchange in the IPRAC using computational fluid dynamics (CFD) and in vitro deionized water gas exchange testing. A CFD gas exchange and flow model was developed to guide a progressive impeller design process. Six impeller blade geometries were designed and tested in vitro in an IPRAC device with 2- or 10-mm axial spacing and varying numbers of blades (2-5). The maximum CO2 removal efficiency (exchange per unit surface area) achieved was 573 ± 8 mL/min/m(2) (40.1 mL/min absolute). The gas exchange rate was found to be largely independent of blade design and number of blades for the impellers tested but increased significantly (5-10%) with reduced axial spacing allowing for additional shaft impellers (23 vs. 14). CFD gas exchange predictions were within 2-13% of experimental values and accurately predicted the relative improvement with impellers at 2- versus 10-mm axial spacing. The ability of CFD simulation to accurately forecast the effects of influential design parameters suggests it can be used to identify impeller traits that profoundly affect facilitated gas exchange.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4206686 | PMC |
http://dx.doi.org/10.1111/aor.12308 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Lomonosov Moscow State University, Moscow, Russia.
On October 11, 2018, in the Ulytau region of the Republic of Kazakhstan, the Soyuz-FG launch vehicle carrying a crewed MS-10 spacecraft failed. It resulted in the release into the fragile arid ecosystems of rocket propellants, i.e.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Botany, Lahore College for Women University, Lahore, Pakistan.
The present study was designed to highlight the ameliorative role of iron nanoparticles (FeNPs) against drought stress in spinach (Spinacia oleracea L.) plants. A pot experiment was performed in two-way completely randomize design with three replicates.
View Article and Find Full Text PDFPediatr Crit Care Med
January 2025
Paediatric Intensive Care Unit, Great Ormond Street Hospital for Children NHS Foundation Trust and NIHR Biomedical Research Centre, London, United Kingdom.
Objectives: A conservative oxygenation strategy is recommended in adult and pediatric guidelines for the management of acute respiratory distress syndrome to reduce iatrogenic lung damage. In the recently reported Oxy-PICU trial, targeting peripheral oxygen saturations (Spo2) between 88% and 92% was associated with a shorter duration of organ support and greater survival, compared with Spo2 greater than 94%, in mechanically ventilated children following unplanned admission to PICU. We investigated whether this benefit was greater in those who had severely impaired oxygenation at randomization.
View Article and Find Full Text PDFNano Lett
January 2025
Interdisciplinary Graduate Program in Materials Science, Vanderbilt University, Nashville, Tennessee 37235, United States.
Permeance-selectivity trade-offs are inherent to polymeric membranes. In fuel cells, thinner proton exchange membranes (PEMs) could enable higher proton conductance and increased power density with lower area-specific resistance (ASR), smaller ohmic losses, and lower ionomer cost. However, reducing thickness is accompanied by an increase in undesired species crossover harming performance and long-term efficiency.
View Article and Find Full Text PDFEES Catal
December 2024
Department of Chemical Engineering, Delft University of Technology 2629 HZ Delft The Netherlands
Electrochemical CO reduction offers a promising method of converting renewable electrical energy into valuable hydrocarbon compounds vital to hard-to-abate sectors. Significant progress has been made on the lab scale, but scale-up demonstrations remain limited. Because of the low energy efficiency of CO reduction, we suspect that significant thermal gradients may develop in industrially relevant dimensions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!