We report continuous monitoring of heterogeneously distributed oxygenated functionalities on the entire surface of the individual graphene oxide flake during the chemical reduction process. The charge densities over the surface with mixed oxidized and graphitic domains were observed for the same flake after a step-by-step chemical reduction process using electrostatic force microscopy. Quantitative analysis revealed heavily oxidized nanoscale domains (50-100 nm across) on the graphene oxide surface and a complex reduction mechanism involving leaching of sharp oxidized asperities from the surface followed by gradual thinning and formation of uniformly mixed oxidized and graphitic domains across the entire flake.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja5005416 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!