Quantitative comparison of cortical and deep grey matter in pathological subtypes of unilateral cerebral palsy.

Dev Med Child Neurol

The University of Queensland, School of Medicine, Brisbane, Qld, Australia; Queensland Cerebral Palsy and Rehabilitation Research Centre, Brisbane School of Medicine, The University of Queensland, Brisbane, Qld, Australia.

Published: October 2014

Aim: The aim of this study was to quantify grey matter changes in children with unilateral cerebral palsy (UCP), differentiating between cortical or deep grey matter (CDGM) lesions, periventricular white matter (PWM) lesions, and unilateral and bilateral lesions.

Method: In a cross-sectional study we obtained high resolution structural magnetic resonance images from 72 children (41 males, 31 females, mean age 10y 9mo [SD 3y 1mo], range 5y 1mo-17y 1mo) with UCP (33 left, 39 right hemiplegia; Manual Ability Classification System level I n=29, II n=43; Gross Motor Function Classification System level I n=46, II n=26), and 19 children with typical development (CTD; eight males, 11 females, mean age 11y 2mo [SD 2y 7mo], range 7y 8mo-16y 4mo). Images were classified by lesion type and analyzed using voxel-based morphometry (VBM) and subcortical volumetric analysis.

Results: Deep grey matter volumes were not significantly different between children with CDGM and PWM lesions, with the thalamus, putamen, and globus pallidus being reduced unilaterally in both groups compared with CTD (p≤0.001). Children with CDGM lesions additionally showed widespread cortical changes involving all lobes using VBM (p<0.01). Children with bilateral lesions had reduced thalamus and putamen volumes bilaterally (p<0.001). The thalamic volume was reduced bilaterally in children with unilateral lesions (p=0.004).

Interpretation: Lesions to the PWM cause secondary changes to the deep grey matter structures similar to primary changes seen in CDGM lesions. Despite having a unilateral phenotype, grey matter changes are observed bilaterally, even in children with unilateral lesions.

Download full-text PDF

Source
http://dx.doi.org/10.1111/dmcn.12461DOI Listing

Publication Analysis

Top Keywords

grey matter
16
deep grey
12
cortical deep
8
unilateral cerebral
8
cerebral palsy
8
cdgm lesions
8
pwm lesions
8
males females
8
females age
8
classification system
8

Similar Publications

Background: Individuals with Down syndrome (DS) have an increased genetic risk of developing Alzheimer's disease (AD), with most adults developing AD neuropathology in their 40s. Despite having a low frequency of systemic vascular risk factors such as hypertension and atherosclerosis, adults with DS display cerebrovascular pathology, including microbleeds, microinfarcts, and cerebral amyloid angiopathy. This suggests that blood-brain barrier (BBB) integrity may be compromised allowing the extravasation of blood proteins in the brain parenchyma.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

VA Boston Healthcare System, Boston, MA, USA.

Background: T-cell infiltration into the brain parenchyma is associated with hyperphosphorylated tau (p-tau) accumulation in neurodegenerative diseases. Chronic traumatic encephalopathy (CTE) is a progressive tauopathy caused by exposure to repetitive head impacts (RHI). CTE is defined by the perivascular accumulation of p-tau at the cortical sulcal depths and can be stratified into mild and severe pathological stages.

View Article and Find Full Text PDF

Background: Despite amyloid-β (Aβ) plaques and tau neurofibrillary tangles being recognized as major Alzheimer's Disease (AD) hallmarks, their synergistic contribution to neuronal activity remains unclear. We developed a neuroimaging-based personalized brain activity model to assess the in-vivo functional impact of AD pathophysiology. In previous reports, model-inferred neuronal excitability predicted disease progression (i.

View Article and Find Full Text PDF

Background: Preclinical animal models are essential for the development of effective treatments. For instance, the 5xFAD mouse model successfully represents the pathophysiology of Alzheimer's disease (AD). Expression of humanized APP (K670N/M671L - Swedish, I716V - Florida, V717I - London) and PSEN1 (M146L and L286V), found in early onset AD patients, induces the production of amyloid-β 42 (Aβ42) and amyloid deposition, gliosis, and progressive neuronal loss.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

University of California, San Francisco, Weill Institute for Neurosciences, San Francisco, CA, USA.

Background: Alzheimer's disease (AD) and other dementia risk may be influenced by the immune function and associated with several white blood cell type counts. In cognitively normal Black, Hispanic, and non-Hispanic white older adults we related three white blood cell types previously associated with AD risk to tau positron emission tomography (PET) values in the medial temporal lobe (MTL), where tau accumulates early. We assessed whether amyloid positivity moderated this relationship.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!