Background: Intervention aimed at disrupting or inhibiting newly formed vascular network is highly desired to attenuate the progression of angiogenesis-dependent diseases. In cancer, this is tightly associated with the generation of VEGF by hypoxia inducible factor-1α following its activation by hypoxia. In light of the multiple cellular roles played by microtubules and their involvement in the processing of the hypoxia inducible factor-1α transcript, modulation of microtubule dynamics is emerging as a logical approach to suppress tumor reliance on angiogenesis. Targetin is a novel noscapinoid that interferes with microtubule dynamicity and inhibits the growth of cell lines from many types of cancers.
Methods And Results: Utilizing and angiogenic models, we discovered the vascular disrupting and anti-angiogenic properties of Targetin. Targetin disrupted pre-assembled capillary-like networks of human endothelial cells by severing cell-cell junctions, inhibiting endothelial cell proliferation and metabolic activity in the presence and absence of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). Furthermore, we show that Targetin significantly inhibits the formation of neovasculature network sprouting from rat aortic explants stimulated with proangiogenic stimuli, namely VEGF or bFGF.
Conclusion: We conclude that Targetin is a potential clinically promising anti-angiogenic agent for the treatment of many diseases including cancers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991473 | PMC |
http://dx.doi.org/10.14205/2309-3021.2013.01.01.6 | DOI Listing |
Mol Oncol
December 2024
Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates.
Hypoxia is known to induce reprogramming of glucose metabolism in cancer. However, the impact of hypoxia on global metabolism remains poorly understood. Here, using the systems approach, we evaluated the potential crosstalk between hypoxia and global metabolism using data from > 2000 breast tumors.
View Article and Find Full Text PDFCardiovasc Toxicol
December 2024
Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 3 Chongwenmennei Street, Dongcheng District, Beijing, 100730, China.
Nuclear factor erythroid 2-related factor 2 (NRF2) is a redox-sensitive transcriptional factor that enables cells to resist oxidant responses, ferroptosis and inflammation. Here, we set out to probe the effects of NRF2 on cardiomyocyte injury under acute myocardial infarction (AMI) condition and its potential mechanism. Human cardiomyocytes were exposed to hypoxia/reoxygenation (H/R) to induce cell injury.
View Article and Find Full Text PDFElife
December 2024
Center of Translational Medicine, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, China.
TIPE () has been identified as an oncogene and participates in tumor biology. However, how its role in the metabolism of tumor cells during melanoma development remains unclear. Here, we demonstrated that TIPE promoted glycolysis by interacting with pyruvate kinase M2 (PKM2) in melanoma.
View Article and Find Full Text PDFNeurol Int
December 2024
Department of Psychology, University of Maine, 301 Williams Hall, Orono, ME 04469-5742, USA.
Cluster headache is a severe, poorly understood disorder for which there are as yet virtually no rationally derived treatments. Here, Lee Kudrow's 1983 theory, that cluster headache is an overly zealous response to hypoxia, is updated according to current understandings of hypoxia detection, signaling, and sensitization. It is shown that the distinctive clinical characteristics of cluster headache (circadian timing of attacks and circannual patterning of bouts, autonomic symptoms, and agitation), risk factors (cigarette smoking; male gender), triggers (alcohol; nitroglycerin), genetic findings (GWAS studies), anatomical substrate (paraventricular nucleus of the hypothalamus, solitary tract nucleus/NTS, and trigeminal nucleus caudalis), neurochemical features (elevated levels of galectin-3, nitric oxide, tyramine, and tryptamine), and responsiveness to treatments (verapamil, lithium, melatonin, prednisone, oxygen, and histamine desensitization) can all be understood in terms of hypoxic signaling.
View Article and Find Full Text PDFCurr Issues Mol Biol
November 2024
Department of Anatomy and Neurosciences, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea.
Ischemic stroke is a leading contributor to death and disability worldwide, driving extensive research into pharmacological treatments beyond thrombolysis. Macrophage migration inhibitory factor (MIF), a cytokine, is implicated in several pathological conditions. In this study, we examined the effects of MIF on autophagy in astrocytes under the condition of chemical hypoxia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!