Metastasis, a cascade of events beginning with epithelial-to-mesenchymal transition (EMT), is the main cause of cancer-related mortality. EMT endows circulating cancer cells (CTCs) with invasive and anti-apoptotic properties. These transitioning cells leave the primary tumor site and travel through the circulation to populate remote organs, even prior to the onset of clinical symptoms. During this journey, CTCs activate platelets, which in turn secrete α-granules. These α-granules contain high levels of transforming growth factor-β (TGF-β) and platelet-derived growth factor (PDGF), both considered to be powerful activators of EMT. Recently, regular aspirin use was associated with a reduced risk of cancer metastasis. However, the molecular mechanism underlying the chemotherapeutic effects of aspirin on metastasis has not been fully elucidated. As platelets lack a nucleus, regular aspirin use may exert long-lasting effects on irreversible inhibition of cyclooxygenase (COX)-1 and, subsequently, the secretion of α-granules, which contributes to the maintenance of the EMT state of CTCs. Thus, we hypothesized that the inhibition of platelet-induced EMT of CTCs through the COX-1 signaling pathway may contribute to the intriguing antimetastatic potential of aspirin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3990215PMC
http://dx.doi.org/10.3892/br.2014.242DOI Listing

Publication Analysis

Top Keywords

epithelial-to-mesenchymal transition
8
regular aspirin
8
aspirin
5
emt
5
aspirin inhibit
4
inhibit platelet-induced
4
platelet-induced epithelial-to-mesenchymal
4
transition circulating
4
circulating tumor
4
tumor cells
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!