CARd-3D: Carbon Distribution in 3D Structure Program for Globular Proteins.

Bioinformation

BioInformatics Research Centre, School of Computer Engineering, Nanyang Technological University, Block NS4-04-33, Singapore - 639798 Singapore.

Published: April 2014

AI Article Synopsis

  • The study examines the spatial arrangement of carbon in protein structures, specifically analyzing the carbon fractions around individual atoms.
  • Results indicate that globular proteins conform to an expected carbon distribution of 31.45%, with dimeric forms showing better carbon distribution compared to monomers.
  • Additionally, liquid structures (analyzed through NMR) exhibit superior carbon distribution compared to solid structures (analyzed through X-Ray), while fiber proteins align with expected carbon distribution patterns, unlike toxin proteins that display abnormal distributions.

Article Abstract

Spatial arrangement of carbon in protein structure is analyzed here. Particularly, the carbon fractions around individual atoms are compared. It is hoped that it follows the principle of 31.45% carbon around individual atoms. The results reveal that globular protein's atoms follow this principle. A comparative study on monomer versus dimer reveal that carbon is better distributed in dimeric form than in its monomeric form. Similar study on solid versus liquid structures reveals that the liquid (NMR) structure has better carbon distribution over the corresponding solid (X-Ray) structure. The carbon fraction distributions in fiber and toxin protein are compared. Fiber proteins follow the principle of carbon fraction distribution. At the same time it has another broad spectrum of carbon distribution than in globular proteins. The toxin protein follows an abnormal carbon fraction distribution. The carbon fraction distribution plays an important role in deciding the structure and shape of proteins. It is hoped to help in understanding the protein folding and function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3974240PMC
http://dx.doi.org/10.6026/97320630010138DOI Listing

Publication Analysis

Top Keywords

carbon fraction
16
carbon distribution
12
fraction distribution
12
carbon
10
globular proteins
8
individual atoms
8
follow principle
8
toxin protein
8
distribution
6
structure
5

Similar Publications

Pultruded carbon fiber-reinforced composites are attractive to the wind energy industry due to the rapid production of highly aligned unidirectional composites with enhanced fiber volume fractions and increased specific strength and stiffness. However, high volume carbon fiber manufacturing remains cost-prohibitive. This study investigates the feasibility of a pultruded low-cost textile carbon fiber-reinforced epoxy composite as a promising material in spar cap production was undertaken based on mechanical response to four-point flexure loading.

View Article and Find Full Text PDF

This study introduces a novel analytical framework for investigating the vibration characteristics of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) elliptical cylindrical shells under arbitrary boundary conditions. Unlike previous studies that focused on simplified geometries or specific boundary conditions, this work combines the least-squares weighted residual method (LSWRM) with an adapted variational principle, addressing high-order vibration errors and ensuring continuity across structural segments. The material properties are modeled using an extended rule of mixtures, capturing the effects of carbon nanotube volume fractions and distribution types on structural dynamics.

View Article and Find Full Text PDF

This study investigates the development of epoxy-resin composites reinforced with coral-derived calcium carbonate (CaCO) fillers for enhanced radiation shielding and mechanical properties. Leveraging the high calcium content and density of coral, composites were prepared with filler weight fractions of 0%, 25%, and 50%. SEM and EDS analyses revealed that higher filler concentrations (50%) increased particle agglomeration, affecting matrix uniformity.

View Article and Find Full Text PDF

Single-walled carbon nanotubes (SWNTs) exhibit distinct electronic properties, categorized as metallic or semiconducting, determined by their chirality. The precise and selective separation of these electronic types is pivotal for advancing nanotechnology applications. While conventional gel chromatography has been widely employed for large-scale separations, its limitations in addressing microscale dynamics and electronic-type differentiation have persisted.

View Article and Find Full Text PDF

As sustainable forest management gains increasing attention, comprehending the impact of stand density on soil properties and microbial communities is crucial for optimizing forest ecosystem functions. This study employed high-throughput sequencing in conjunction with soil physicochemical analysis to assess the effects of stand density on soil physicochemical properties and microbial community characteristics in Chinese fir plantations, aiming to elucidate the influence of density regulation on ecosystem services. Our results suggested that changes in soil physicochemical properties and microenvironmental conditions were key drivers of soil microbial diversity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!