Spatial arrangement of carbon in protein structure is analyzed here. Particularly, the carbon fractions around individual atoms are compared. It is hoped that it follows the principle of 31.45% carbon around individual atoms. The results reveal that globular protein's atoms follow this principle. A comparative study on monomer versus dimer reveal that carbon is better distributed in dimeric form than in its monomeric form. Similar study on solid versus liquid structures reveals that the liquid (NMR) structure has better carbon distribution over the corresponding solid (X-Ray) structure. The carbon fraction distributions in fiber and toxin protein are compared. Fiber proteins follow the principle of carbon fraction distribution. At the same time it has another broad spectrum of carbon distribution than in globular proteins. The toxin protein follows an abnormal carbon fraction distribution. The carbon fraction distribution plays an important role in deciding the structure and shape of proteins. It is hoped to help in understanding the protein folding and function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3974240 | PMC |
http://dx.doi.org/10.6026/97320630010138 | DOI Listing |
Materials (Basel)
January 2025
Tickle College of Engineering, University of Tennessee, Knoxville, TN 37996, USA.
Pultruded carbon fiber-reinforced composites are attractive to the wind energy industry due to the rapid production of highly aligned unidirectional composites with enhanced fiber volume fractions and increased specific strength and stiffness. However, high volume carbon fiber manufacturing remains cost-prohibitive. This study investigates the feasibility of a pultruded low-cost textile carbon fiber-reinforced epoxy composite as a promising material in spar cap production was undertaken based on mechanical response to four-point flexure loading.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Ulsan Ship and Ocean College, Ludong University, Yantai 264025, China.
This study introduces a novel analytical framework for investigating the vibration characteristics of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) elliptical cylindrical shells under arbitrary boundary conditions. Unlike previous studies that focused on simplified geometries or specific boundary conditions, this work combines the least-squares weighted residual method (LSWRM) with an adapted variational principle, addressing high-order vibration errors and ensuring continuity across structural segments. The material properties are modeled using an extended rule of mixtures, capturing the effects of carbon nanotube volume fractions and distribution types on structural dynamics.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Faculty of Radiological Technology, Rangsit University, Pathumthani 12000, Thailand.
This study investigates the development of epoxy-resin composites reinforced with coral-derived calcium carbonate (CaCO) fillers for enhanced radiation shielding and mechanical properties. Leveraging the high calcium content and density of coral, composites were prepared with filler weight fractions of 0%, 25%, and 50%. SEM and EDS analyses revealed that higher filler concentrations (50%) increased particle agglomeration, affecting matrix uniformity.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Materials Science and Engineering, Gachon University, Seongnam 13120, Republic of Korea.
Single-walled carbon nanotubes (SWNTs) exhibit distinct electronic properties, categorized as metallic or semiconducting, determined by their chirality. The precise and selective separation of these electronic types is pivotal for advancing nanotechnology applications. While conventional gel chromatography has been widely employed for large-scale separations, its limitations in addressing microscale dynamics and electronic-type differentiation have persisted.
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
As sustainable forest management gains increasing attention, comprehending the impact of stand density on soil properties and microbial communities is crucial for optimizing forest ecosystem functions. This study employed high-throughput sequencing in conjunction with soil physicochemical analysis to assess the effects of stand density on soil physicochemical properties and microbial community characteristics in Chinese fir plantations, aiming to elucidate the influence of density regulation on ecosystem services. Our results suggested that changes in soil physicochemical properties and microenvironmental conditions were key drivers of soil microbial diversity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!