Clinical studies found that negative-pressure wound therapy (NPWT) displayed significant clinical benefits in the healing of infected wounds. However, the effect of NPWT on local inflammatory responses in acute infected soft-tissue wound has not been investigated thoroughly. The purpose of this study was to test the impact of NPWT on local expression of proinflammatory cytokines, amount of neutrophils, and bacterial bioburden in wound from acute infected soft-tissue wounds. Full-thickness wounds were created on the back of rabbits, and were inoculated with Staphylococcus aureus strain ATCC29213. The wounds were treated with sterile saline-moistened gauze dressings and NPWT with continuous negative pressure (-125 mmHg). Wound samples were harvested on days 0 (6 h after bacterial inoculation), 2, 4, 6, and 8 at the center of wound beds before irrigation for real-time PCR analysis of gene expression of IL-1β, IL-8, and TNF-α. Wound biopsies were examined histologically for neutrophil quantification in different layers of tissue. Quantitative bacterial cultures at the same time point were analyzed for bacterial clearance. Application of NPWT to acute infected wounds in rabbits was compared with treatment with sterile saline-moistened gauze, over an 8-day period. NPWT-treated wounds exhibited earlier and greater peaking of IL-1β and IL-8 expression and decrease in TNF-α expression over the early 4 days (P < 0.05). Furthermore, histologic examination revealed that significantly increased neutrophil count was observed in the shallow layer in wound biopsies of NPWT treatment at day 2 (P < 0.001). In addition, there was a statistically significant decrease of bacteria load from baseline (day 0) at days 2 and 8 in NPWT group (P < 0.05). In conclusion, this study demonstrates that NPWT of acute infected soft-tissue wounds leads to increased local IL-1β and IL-8 expression in early phase of inflammation, which may trigger accumulation of neutrophils and thus accelerate bacterial clearance. Meanwhile, the success of NPWT in the treatment of acute wounds can attenuate the expression of TNF-α, and the result may partly explain how NPWT can avoid significantly impairing wound healing.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12013-014-9953-0DOI Listing

Publication Analysis

Top Keywords

acute infected
20
infected soft-tissue
16
il-1β il-8
12
npwt
10
wound
9
negative-pressure wound
8
wound therapy
8
local inflammatory
8
inflammatory responses
8
responses acute
8

Similar Publications

Background: The spread of the BA.5 Omicron variant of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has increased the number of hospitalized children. However, the impact of the spread of new omicron subvariants in children remains poorly described.

View Article and Find Full Text PDF

Immune thrombocytopenia (ITP) is an autoimmune hematological condition characterized by a markedly isolated decrease in platelets without any apparent associated clinical conditions, resulting in bleeding and bruising of the skin, mucous membranes, and major organs. It is often triggered by preceding illness or several immune stimulants such as immunizations, infections, allergic reactions, among others. While uncommon, arthropod bites can trigger acute ITP.

View Article and Find Full Text PDF

Background: Laparoscopic cholecystectomy is considered safe; however, it is not free from complications, such as bile duct injuries, bleeding, and infection of the surgical site.

Aims: The aim of this study was to determine the effectiveness of two prediction tools, the American College of Surgeons-National Surgical Quality Improvement Program (ACS-NSQIP) calculator and the surgical Apgar, in predicting post-cholecystectomy complications.

Methods: A cross-sectional, analytical, and comparative study was conducted on patients over 18 years old diagnosed with acute cholecystitis who underwent open or laparoscopic cholecystectomy at the Regional Teaching Hospital of Trujillo between 2015 and 2019.

View Article and Find Full Text PDF

Acute SARS-CoV-2 infections are not always diagnosed; hence an unknown proportion of all infections are not documented. SARS-CoV-2 can induce spike and nucleocapsid protein specific IgG antibodies, which can be detected in seroprevalence studies to identify a previous infection. However, with the introduction of vaccines containing the spike protein it is no longer possible to use spike-IgG as a marker of infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!