Liver X receptors (LXRs) are nuclear receptors that play an essential role in lipid and cholesterol metabolism. Emerging studies indicate a potential function for LXRs in regulating dendritic cell (DC)-dependent immune responses; however, the role of LXRs in DC differentiation is largely unknown. Here, we report that LXRα regulates the differentiation of mouse GM-CSF-derived DCs. Activation or overexpression of LXRα significantly enhanced myeloid DC differentiation from mouse bone marrow (BM) cells, while siRNA-mediated knockdown of LXRα suppressed DC differentiation. In addition, we demonstrated that LXR agonist-programmed DCs showed an increased capacity for stimulating T-cell proliferation. Mechanistic studies showed that activation of LXR could inhibit the phosphorylation of STAT3 and downregulate the expression of its target, S100A9, an important negative regulator of myeloid DC differentiation. We also found that Histone deacetylase (HDAC) inhibition interfered with the effect of LXR on STAT3 signaling via acetylation of STAT3. Chromatin immunoprecipitation assays confirmed that LXR activation and HDAC inhibition balanced the recruitment of STAT3 to the S100A9 promoter, which involved distinct post-translational modifications of STAT3. In conclusion, our observations demonstrated a novel role for LXRα in GM-CSF-derived DC differentiation and revealed the underlying mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molimm.2014.03.006 | DOI Listing |
Adv Sci (Weinh)
November 2024
Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, Université Paris Cité, Paris, 75018, France.
Cross-presentation by MHCI is optimally efficient in type 1 dendritic cells (DC) due to their high capacity for antigen processing. However, through specific pathways, other DCs, such as type 2 DCs and inflammatory DCs (iDCs) can also cross-present antigens. FcγR-mediated uptake by type 2 DC and iDC subsets mediates antibody-dependent cross-presentation and activation of CD8 T cell responses.
View Article and Find Full Text PDFInt J Mol Sci
May 2023
Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
Dendritic cells (DCs) are the most potent antigen-presenting cells that have multifaceted functions in the control of immune activation and tolerance. Hyperresponsiveness and altered tolerogenicity of DCs contribute to the development and pathogenesis of system lupus erythematosus (SLE); therefore, DC-targeted therapies aimed at inducing specific immune tolerance have become of great importance for the treatment of SLE. This study developed a new nanoparticle (NP) containing a biodegradable PDMAEMA-PLGA copolymer for target-oriented delivery to DCs in situ.
View Article and Find Full Text PDFSci Rep
July 2022
Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuouku, Kumamoto, 860-8556, Japan.
Ever since immune checkpoint inhibitors have been approved for anti-cancer therapy in several cancers, including triple-negative breast cancer, the significance of programmed death-1 ligand 1 (PD-L1) expression in the tumor immune microenvironment has been a topic of interest. In the present study, we investigated the detailed mechanisms of PD-L1 overexpression on tumor-associated macrophages (TAMs) in breast cancer. In in vitro culture studies using human monocyte-derived macrophages, lymphocytes, and breast cancer cell lines, PD-L1 overexpression on macrophages was induced by the conditioned medium (CM) of activated lymphocytes, but not that of cancer cells.
View Article and Find Full Text PDFFront Immunol
April 2022
School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.
Rheumatoid arthritis (RA) occurs in about 5 per 1,000 people and can lead to severe joint damage and disability. However, the knowledge of pathogenesis and treatment for RA remains limited. Here, we found that histone demethylase inhibitor GSK-J4 relieved collagen induced arthritis (CIA) symptom in experimental mice model, and the underlying mechanism is related to epigenetic transcriptional regulation in macrophages.
View Article and Find Full Text PDFCancer Immunol Immunother
November 2022
Department of Thoracic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
Programmed cell death-1 (PD-1) and PD-1 ligand 1 (PD-L1) are target molecules for immunotherapy in non-small cell lung cancer. PD-L1 is expressed not only in cancer cells, but also on macrophages, and has been suggested to contribute to macrophage-mediated immune suppression. We examined the clinical significance of PD-L1 expression on macrophages in human lung adenocarcinoma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!