The objective of this study was to assess the relationship between genetic polymorphisms and drug interactions on codeine and morphine concentrations in codeine-related deaths (CRD). All CRD in Ontario, Canada between 2006 and 2008 were identified. Post-mortem blood was analyzed for 22 polymorphisms in 5 genes involved in codeine metabolism and response. Sixty-eight CRD were included in this study. The morphine-to-codeine ratio was significantly correlated with the presence of a CYP2D6 inhibitor at varying potencies (p=0.0011). The presence of other central nervous system (CNS) depressants (i.e. benzodiazepines, hypnotics, and/or alcohol) was significantly associated with lower codeine concentration as compared to CRD in which other CNS depressants were not detected (p=0.0002). Individuals who carried the ABCB1 1236T variant had significantly lower morphine concentrations (p=0.004). In this population of individuals whose cause of death was related to codeine, drug interactions and genetic polymorphisms were significantly associated with post-mortem codeine and morphine concentrations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.forsciint.2014.03.018 | DOI Listing |
Eur J Med Res
January 2025
Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China.
Objective: This study aimed to evaluate CTF1 expression in glioma, its relationship to patient prognosis and the tumor immune microenvironment, and effects on glioma phenotypes to identify a new therapeutic target for treating glioma precisely.
Methods: We initially assessed the expression of CTF1, a member of the IL-6 family, in glioma, using bioinformatics tools and publicly available databases. Furthermore, we examined the correlation between CTF1 expression and tumor prognosis, DNA methylation patterns, m6A-related genes, potential biological functions, the immune microenvironment, and genes associated with immune checkpoints.
Sci Rep
January 2025
Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, Zhengzhou, Henan, China.
Parkinson's disease (PD) and insomnia are prevalent neurological disorders, with emerging evidence implicating tryptophan (TRP) metabolism in their pathogenesis. However, the precise mechanisms by which TRP metabolism contributes to these conditions remain insufficiently elucidated. This study explores shared tryptophan metabolism-related genes (TMRGs) and molecular mechanisms underlying PD and insomnia, aiming to provide insights into their shared pathogenesis.
View Article and Find Full Text PDFNat Commun
January 2025
Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany.
Post-translational modifications (PTMs) play pivotal roles in regulating cellular signaling, fine-tuning protein function, and orchestrating complex biological processes. Despite their importance, the lack of comprehensive tools for studying PTMs from a pathway-centric perspective has limited our ability to understand how PTMs modulate cellular pathways on a molecular level. Here, we present PTMNavigator, a tool integrated into the ProteomicsDB platform that offers an interactive interface for researchers to overlay experimental PTM data with pathway diagrams.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
Tetrahydrocannabinol (THC) is the principal psychoactive compound derived from the cannabis plant Cannabis sativa and approved for emetic conditions, appetite stimulation and sleep apnea relief. THC's psychoactive actions are mediated primarily by the cannabinoid receptor CB. Here, we determine the cryo-EM structure of HU210, a THC analog and widely used tool compound, bound to CB and its primary transducer, G.
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410006, Hunan, China.
Acrylic pressure-sensitive adhesives (PSAs) are widely applied in transdermal drug delivery systems (TDDS). However, the molecular mechanisms underlying the effect of functional groups of PSAs on drug release and transdermal permeation properties remain insufficiently clear. In this study, we investigated the effect of acrylic PSAs' functional groups on the in vitro release and transdermal permeation properties of a model drug guanfacine (GFC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!