Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In recent years much research in RNA nanotechnology has been directed to develop an efficient and clinically suitable delivery system for short interfering RNA (siRNA). The current study describes the in vivo siRNA delivery using PEGylated antibody-targeted SAINT-based-lipoplexes (referred to as antibody-SAINTPEGarg/PEG2%), which showed superior siRNA delivery capacity and effective down-regulation of VE-cadherin gene expression in vitro in inflammation-activated primary endothelial cells of different vascular origins. PEGylation of antibody-SAINTPEGarg resulted in more desirable pharmacokinetic behavior than that of non-PEGylated antibody-SAINTPEGarg. To create specificity for inflammation-activated endothelial cells, antibodies against vascular cell adhesion molecule-1 (VCAM-1) were employed. In TNFα-challenged mice, these intravenously administered anti-VCAM-1-SAINTPEGarg/PEG2% homed to VCAM-1 protein expressing vasculature. Confocal laser scanning microscopy revealed that anti-VCAM-1-SAINTPEGarg/PEG2% co-localized with endothelial cells in lung postcapillary venules. Furthermore, they did not exert any liver and kidney toxicity. Yet, lack of in vivo gene silencing as assessed in whole lung and in laser microdissected lung microvascular segments indicates that in vivo internalization and/or intracellular trafficking of the delivery system and its cargo in the target cells are not sufficient, and needs further attention, emphasizing the essence of evaluating siRNA delivery systems in an appropriate in vivo animal model at an early stage in their development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2014.04.041 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!