Despite the continuing progress made toward mapping kinase signaling networks, there are still many phosphorylation events for which the responsible kinase has not yet been identified. We are interested in addressing this problem through forming covalent crosslinks between a peptide substrate and the corresponding phosphorylating kinase. Previously we reported a dialdehyde-based kinase-binding probe capable of such a reaction with a peptide containing a cysteine substituted for the phosphorylatable ser/thr/tyr residue. Here, we examine the yield of a previously reported dialdehyde-based probe and report that the dialdehyde-based probes possess a significant limitation in terms of crosslinked kinase-substrate product yield. To address this limitation, we developed a crosslinking scheme based on a kinase activity-based probe, and this crosslinker provides an increase in efficiency and substrate specificity, including in the context of cell lysate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4627693 | PMC |
http://dx.doi.org/10.1016/j.chembiol.2014.02.022 | DOI Listing |
Int J Biol Macromol
January 2025
School of Chemistry Materials Engineering, Zhejiang A&F University, Zhejiang Province, Hangzhou 10341, PR China.
Using deep eutectic solvents (DES) to pretreat wheat straw (WS) and extract lignin-containing nanocellulose (LCNC). Acrylic acid/choline chloride (AA/ChCl) polymerizable deep eutectic solvents (PDES) were used as the primary polymerization network, combined with polyvinyl alcohol (PVA). Lignocellulose nanocrystals (LCNC) oxidized by sodium periodate were prepared as dialdehyde-based nanocellulose (DCNC) to serve as the crosslinking agent.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
June 2024
State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China.
Conjugated polymers with tailorable composition and microarchitecture are propitious for modulating catalytic properties and deciphering inherent structure-performance relationships. Herein, we report a facile linker engineering strategy to manipulate the electronic states of metallophthalocyanine conjugated polymers and uncover the vital role of organic linkers in facilitating electrocatalytic oxygen reduction reaction (ORR). Specifically, a set of cobalt phthalocyanine conjugated polymers (CoPc-CPs) wrapped onto carbon nanotubes (denoted CNTs@CoPc-CPs) are judiciously crafted via in situ assembling square-planar cobalt tetraaminophthalocyanine (CoPc(NH)) with different linear aromatic dialdehyde-based organic linkers in the presence of CNTs.
View Article and Find Full Text PDFInt J Biol Macromol
May 2023
Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, China. Electronic address:
Dialdehyde-based cross-linking agents are widely used in the cross-linking of amino group-containing macromolecules. However, the most commonly used cross-linking agents, glutaraldehyde (GA) and genipin (GP), have safety issues. In this study, a series of dialdehyde derivatives of polysaccharides (DADPs) were prepared by oxidation of polysaccharides, and their biocompatibility and cross-linking properties were tested using chitosan as a model macromolecule.
View Article and Find Full Text PDFSmall Methods
November 2022
Department of Chemistry, State Key Laboratory of Synthetic Organic Chemistry, The University of Hong Kong, Hong Kong, SAR, P. R. China.
Ortho-phthalaldehyde has recently found wide potentials for protein bioconjugation and peptide cyclization. Herein, the second-generation dialdehyde-based peptide cyclization method is reported. The thiophene-2,3-dialdehyde (TDA) reacts specifically with the primary amine (from Lys side chain or peptide N-terminus) and thiol (from Cys side chain) within unprotected peptides to generate a highly stable thieno[2,3-c]pyrrole-bridged cyclic structure, while it does not react with primary amine alone.
View Article and Find Full Text PDFChem Asian J
October 2021
Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea.
Here, we report the synthesis of a truncated cone-shaped triangular porphyrinic macrocycle, P L , via a single step imine condensation of a cis-diaminophenylporphyrin and a bent dialdehyde-based linker as building units. X-ray diffraction analysis reveals that the truncated cone-shaped P L molecules are stacked on top of each other by π⋯π and CH⋯π interactions, to form 1.7 nm wide hollow columns in the solid state.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!