Geochemical characteristics of phosphorus in surface sediments of two major Chinese mariculture areas: the Laizhou Bay and the coastal waters of the Zhangzi Island.

Mar Pollut Bull

Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China.

Published: June 2014

Phosphorus (P) in surface sediments of the Laizhou Bay (LB) and the coastal waters around the Zhangzi Island (ZI) was analyzed. Six forms of P were separated - exchangeable or loosely sorbed P (Ads-P), aluminum-bound P (Al-P), iron-bound P (Fe-P), authigenic apatite plus CaCO3-bound P plus biogenic apatite (Ca-P), detrital apatite plus other inorganic P (De-P) and organic P (OP). The average contents of P in the LB were in the order: De-P>OP>Ca-P>Fe-P>Ads-P>Al-P; in the ZI, the corresponding order was De-P>OP>Fe-P>Ca-P>Ads-P>Al-P. Due to the high nutrient loadings from the surrounding rivers, TP contents in sediments of the LB were higher than in those of the ZI. The potential bio-available P (Ads-P and OP) accounted for 14.7% and 24.2% of TP in sediments of the LB and the ZI, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2014.03.040DOI Listing

Publication Analysis

Top Keywords

phosphorus surface
8
surface sediments
8
laizhou bay
8
bay coastal
8
coastal waters
8
waters zhangzi
8
zhangzi island
8
geochemical characteristics
4
characteristics phosphorus
4
sediments
4

Similar Publications

Harmful algal blooms (HABs) formed by toxic microalgae have seriously threatened marine ecosystems and food safety and security in recent years. Among them, has attracted the attention of scientists and society due to its acute and rapid neurotoxicity in mice. Herein, the growth and gymnodimine A (GYM-A) production of were investigated in diverse culture systems with different surface-to-volume (S/V) ratios and nitrogen/phosphorus concentrations.

View Article and Find Full Text PDF

Bacterial infections are a common cause of clinical complications associated with the use of orthodontic microimplants. Biofilm formation on their surfaces and subsequent infection of peri-implant tissues can result in either exfoliation or surgical removal of these medical devices. In order to improve the properties of microimplants, hybrid coatings enriched with silver nanoparticles, calcium, and phosphorus were investigated.

View Article and Find Full Text PDF

Widening of Dynamic Detection Range in Real-Time Angular-Interrogation Surface Plasmon Resonance Biosensor Based on Anisotropic Van Der Waals Heterojunction.

Biosensors (Basel)

December 2024

Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.

Surface plasmon resonance (SPR) biosensors have experienced rapid development in recent years and have been widely applied in various fields. Angular-interrogation SPR biosensors play an important role in the field of biological detection due to their advantages of reliable results and high stability. However, angular-interrogation SPR biosensors also suffer from low detection sensitivity, poor real-time performance, and limited dynamic detection range, which seriously restricts their application and promotion.

View Article and Find Full Text PDF

Land use conversion from natural forests to grassland, plantation forests, mono-cropping coffee and croplands is a significant causes of soil degradation, leading to aggravate soil acidity and nutrient depletion. However, there is limited information regarding comprehensive effect of land use conversion on soil fertility and acidity in western Oromia Region of Ethiopia. Hence, this study aims to assess the surface soil fertility and acidity across different land use types (forest, crop, eucalyptus land, grazing land, and coffee farmland) to provide management options.

View Article and Find Full Text PDF

Constructed wetlands, serving as artificially simulated natural wetland water treatment systems, have emerged as effective technologies for ecologically treating wastewater. Biochar, a carbon material derived from biomass waste pyrolysis, possesses significant specific surface area, abundant functional groups, and high stability. The integration of biochar into artificial wetland systems enhances the removal efficiency of pollutants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!