Imaging at the atomic scale using atomic force microscopy in biocompatible environments is an ongoing challenge. We demonstrate atomic resolution of graphite and hydrogen-intercalated graphene on SiC in air. The main challenges arise from the overall surface cleanliness and the water layers which form on almost all surfaces. To further investigate the influence of the water layers, we compare data taken with a hydrophilic bulk-silicon tip to a hydrophobic bulk-sapphire tip. While atomic resolution can be achieved with both tip materials at moderate interaction forces, there are strong differences in force versus distance spectra which relate to the water layers on the tips and samples. Imaging at very low tip-sample interaction forces results in the observation of large terraces of a naturally occurring stripe structure on the hydrogen-intercalated graphene. This structure has been previously reported on graphitic surfaces that are not covered with disordered adsorbates in ambient conditions (i.e., on graphite and bilayer graphene on SiC, but not on monolayer graphene on SiC). Both these observations indicate that hydrogen-intercalated graphene is close to an ideal graphene sample in ambient environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn501696q | DOI Listing |
ACS Appl Mater Interfaces
November 2024
Laboratory for Physical Sciences, College Park, Maryland 20740, United States.
Intercalation is a promising technique to modify the structural and electronic properties of 2D materials on the wafer scale for future electronic device applications. Yet, few reports to date demonstrate 2D intercalation as a viable technique on this scale. Spurred by recent demonstrations of mm-scale sensors, we use hydrogen intercalated quasi-freestanding bilayer graphene (hQBG) grown on 6H-SiC(0001), to understand the electronic properties of a large-area (16 mm) device.
View Article and Find Full Text PDFSensors (Basel)
July 2022
U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, USA.
The electrochemical detection of heavy metal ions is reported using an inexpensive portable in-house built potentiostat and epitaxial graphene. Monolayer, hydrogen-intercalated quasi-freestanding bilayer, and multilayer epitaxial graphene were each tested as working electrodes before and after modification with an oxygen plasma etch to introduce oxygen chemical groups to the surface. The graphene samples were characterized using X-ray photoelectron spectroscopy, atomic force microscopy, Raman spectroscopy, and van der Pauw Hall measurements.
View Article and Find Full Text PDFSensors (Basel)
July 2022
Łukasiewicz Research Network-Institute of Microelectronics and Photonics, Aleja Lotnikow 32/46, 02-668 Warsaw, Poland.
The ability to precisely measure magnetic fields under extreme operating conditions is becoming increasingly important as a result of the advent of modern diagnostics for future magnetic-confinement fusion devices. These conditions are recognized as strong neutron radiation and high temperatures (up to 350 °C). We report on the first experimental comparison of the impact of neutron radiation on graphene and indium antimonide thin films.
View Article and Find Full Text PDFJ Phys Condens Matter
February 2019
Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!