Morphological characterization of respiratory neurons in the pre-Bötzinger complex.

Prog Brain Res

Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM Campus Juriquilla, Querétaro, Mexico. Electronic address:

Published: April 2015

Although the pre-Bötzinger complex (preBötC) was defined as the inspiratory rhythm generator long ago, the functional-anatomical characterization of its neuronal components is still being achieved. Recent advances have identified the expression of molecular markers in the preBötC neurons that, however, are not exclusive to specific respiratory neuron subtypes and have not always been related to specific cell morphologies. Here, we evaluated the morphology and the axonal projections of electrophysiologically defined respiratory neurons in the preBötC using whole-cell recordings and intracellular biocytin labeling. We found that respiratory pacemaker neurons are larger than expiratory neurons and that inspiratory neurons are smaller than pacemaker and expiratory neurons. Other morphological features such as somata shapes or dendritic branching patterns were not found to be significantly different among the preBötC neurons sampled. We also found that both pacemaker and inspiratory nonpacemaker neurons, but not expiratory neurons, show extensive axonal projections to the contralateral preBötC and show signs of electrical coupling. Overall, our data suggest that there are morphological differences between subtypes of preBötC respiratory neurons. It will be important to take such differences in consideration since morphological differences would influence synaptic responses and action potential propagation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/B978-0-444-63274-6.00003-5DOI Listing

Publication Analysis

Top Keywords

respiratory neurons
12
expiratory neurons
12
neurons
11
pre-bötzinger complex
8
prebötc neurons
8
axonal projections
8
morphological differences
8
prebötc
6
respiratory
5
morphological
4

Similar Publications

Gsx2 is a homeodomain transcription factor critical for development of the ventral telencephalon and hindbrain of the mouse. Loss of Gsx2 function results in severe basal ganglia dysgenesis as well as defects in the nucleus tractus solitarius (nTS) of the hindbrain together with respiratory failure at birth. De Mori et al.

View Article and Find Full Text PDF

SARS-CoV-2 infection in microglia and its sequelae: What do we know so far?

Brain Behav Immun Health

December 2024

James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the COVID-19 pandemic. After the success of therapeutics and worldwide vaccination, the long-term sequelae of SARS-CoV-2 infections are yet to be determined. Common symptoms of COVID-19 include the loss of taste and smell, suggesting SARS-CoV-2 infection has a potentially detrimental effect on neurons within the olfactory/taste pathways, with direct access to the central nervous system (CNS).

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a severe disease of the central nervous system (CNS) characterized by motor neuron damage leading to death from respiratory failure. The neurodegenerative process in ALS is characterized by an accumulation of aberrant proteins (TDP-43, SOD1, etc.) in CNS cells.

View Article and Find Full Text PDF

Nearly one billion individuals worldwide suffer from obstructive sleep apnea (OSA) and are potentially impacted by related neurodegeneration. TFEB is considered a master regulator of autophagy and lysosomal biogenesis, but little is known about its role in neuronal oxidative stress and resultant injury induced by OSA. This study aimed to investigate these issues.

View Article and Find Full Text PDF

Fentanyl is a potent synthetic opioid widely used perioperatively and illicitly as a drug of abuse . It is well established that fentanyl acts as a μ-opioid receptor agonist, signaling through Gα intracellular pathways to inhibit electrical excitability, resulting in analgesia and respiratory depression . However, fentanyl uniquely also triggers muscle rigidity, including respiratory muscles, hindering the ability to execute central respiratory commands or to receive external resuscitation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!