Inhibitory interactions between neurons of the respiratory network are involved in rhythm generation and pattern formation. Using a computational model of brainstem respiratory networks, we investigated the possible effects of suppressing glycinergic inhibition on the activity of different respiratory neuron types. Our study revealed that progressive suppression of glycinergic inhibition affected all neurons of the network and disturbed neural circuits involved in termination of inspiration. Causal was a dysfunction of postinspiratory inhibition targeting inspiratory neurons, which often led to irregular preterm reactivation of these neurons, producing double or multiple short-duration inspiratory bursts. An increasing blockade of glycinergic inhibition led to apneustic inspiratory activity. Similar disturbances of glycinergic inhibition also occur during hypoxia. A clear difference in prolonged hypoxia, however, is that the rhythm terminates in expiratory apnea. The critical function of glycinergic inhibition for normal respiratory rhythm generation and the consequences of its reduction, including in pathological conditions, are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4065418PMC
http://dx.doi.org/10.1016/B978-0-444-63274-6.00002-3DOI Listing

Publication Analysis

Top Keywords

glycinergic inhibition
24
respiratory rhythm
8
rhythm generation
8
inhibition
7
respiratory
5
glycinergic
5
effects glycinergic
4
inhibition failure
4
failure respiratory
4
rhythm
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!