New carbazolide-based iridium pincer complexes ((carb)PNP)Ir(C2H4), 3a, and ((carb)PNP)Ir(H)2, 3b, have been prepared and characterized. The dihydride, 3b, reacts with ethylene to yield the cis-dihydride ethylene complex cis-((carb)PNP)Ir(C2H4)(H)2. Under ethylene this complex reacts slowly at 70 °C to yield ethane and the ethylene complex, 3a. Kinetic analysis establishes that the reaction rate is dependent on ethylene concentration and labeling studies show reversible migratory insertion to form an ethyl hydride complex prior to formation of 3a. Exposure of cis-((carb)PNP)Ir(C2H4)(H)2 to hydrogen results in very rapid formation of ethane and dihydride, 3b. DFT analysis suggests that ethane elimination from the ethyl hydride complex is assisted by ethylene through formation of ((carb)PNP)Ir(H)(Et)(C2H4) and by H2 through formation of ((carb)PNP)Ir(H)(Et)(H2). Elimination of ethane from Ir(III) complex ((carb)PNP)Ir(H)(Et)(H2) is calculated to proceed through an Ir(V) complex ((carb)PNP)Ir(H)3(Et) which reductively eliminates ethane with a very low barrier to return to the Ir(III) dihydride, 3b. Under catalytic hydrogenation conditions (C2H4/H2), cis-((carb)PNP)Ir(C2H4)(H)2 is the catalyst resting state, and the catalysis proceeds via an Ir(III)/Ir(V)/Ir(III) cycle. This is in sharp contrast to isoelectronic (PCP)Ir systems in which hydrogenation proceeds through an Ir(III)/Ir(I)/Ir(III) cycle. The basis for this remarkable difference is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja501572g | DOI Listing |
Int J Biol Macromol
January 2025
Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea. Electronic address:
Dermal fillers comprising injectable hyaluronic acid (HA) are widely used for soft tissue augmentation, often using crosslinking agents such as 1,4-butanediol diglycidyl ether (BDDE) or poly (ethylene glycol) diglycidyl ether (PEGDE). Here, we assessed the physical properties, toxicity, and inflammatory reactions of HA fillers crosslinked with either BDDE (HA-BDDE filler) or PEGDE (HA-PEGDE filler) in in vitro and in vivo investigations. The HA-PEGDE filler exhibited higher G', tan δ, G*, and complex viscosity values compared to the HA-BDDE filler, while maintaining similar cohesivity.
View Article and Find Full Text PDFBackground: Diffusion tensor imaging has traditionally been used to assess white matter (WM) integrity in Alzheimer's disease (AD). However, the tensor model is limited in modeling complex WM structure. Neurite Orientation Dispersion and Density Imaging (NODDI), a cutting-edge technique applied to multishell diffusion MRI, can offer more precise insights into microstructural features of WM integrity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China.
The interfacial reaction of a silicon anode is very complex, which is closely related with the electrolyte components and surface elements' chemical status of the Si anode. It is crucial to elucidate the formation mechanism of the solid electrolyte interphase (SEI) on the silicon anode, which promotes the development of a stable SEI. However, the interface reaction mechanism on the silicon surface is closely related to the surface components.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2025
Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China.
Burns are complex traumatic injuries that lead to severe physical and psychological problems due to the prolonged healing period and resulting physical scars. Owing to their versatility, hydrogels can be loaded with various functional factors, making them promising wound dressings. However, many hydrogel dressings cannot support cell survival for a long time, thereby delaying the process of tissue repair.
View Article and Find Full Text PDFChemistry
January 2025
University of Regensburg, Inorganic Chemistry, Universitätsstrasse 31, D-93040, Regensburg, GERMANY.
The systematic nucleophilic functionalization of the cationic pentaphosphole ligand complex [Cp*Fe(η4-P5Me)][OTf] (A) with group 16/17 nucleophiles is reported. This method represents a highly reliable and versatile strategy for the design of novel transition-metal complexes featuring twofold substituted end-deck cyclo-P5 ligands, bearing unprecedented hetero-element substituents. By the reaction of A with classical group 16 nucleophiles, complexes of the type [Cp*Fe(η4-P5MeE)] (E = OEt (1), OtBu (2), SPh (3), SePh (4)) are obtained.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!