The key aroma compounds of premium Australian Shiraz wines from the warm Barossa Valley and cooler Margaret River regions were characterized. GC-Olfactometry was conducted to determine the most important volatile compounds, which were then quantitated. The wine from the Barossa Valley had higher concentrations of ethyl propanoate, dimethyl sulfide (DMS), and oak-derived compounds, whereas the Margaret River wine contained above threshold concentrations of the 'cheesy' compounds 2- and 3-methylbutanoic acid, as well as rotundone, the 'pepper'-smelling compound. The aromas were reconstituted by combining 44 aroma compounds, and sensory descriptive analysis was used to investigate the importance of the omission of several compounds, including DMS, rotundone, fatty acids, and β-damascenone, and the influence of nonvolatiles was also assessed. The study showed that the aroma of the Shiraz wines could be reconstituted in both cases, with the changes in the nonvolatile fraction having a large influence.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf405731vDOI Listing

Publication Analysis

Top Keywords

aroma compounds
12
key aroma
8
shiraz wines
8
barossa valley
8
margaret river
8
compounds
7
aroma
5
characterization key
4
compounds shiraz
4
shiraz wine
4

Similar Publications

Modulating the aroma and taste profile of soybean using novel strains for fermentation.

Curr Res Food Sci

December 2024

Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, Singapore, 117543, Singapore.

A key factor influencing consumer acceptance of soybean products is the aroma and taste profile, which can be modulated through fermentation using unique microbial strains. This study aimed to identify and characterize novel microbial strains with the potential to enhance flavour profiles including umami, while reducing undesirable flavour notes such as beany aromas. The results showed an 800% (8-fold) increase in free amino acids in samples fermented with , which correlated with an increase in umami intensity as measured using an E-tongue.

View Article and Find Full Text PDF

Characterization of the key aroma compounds in cigar filler tobacco leaves from different production regions.

Front Plant Sci

December 2024

Key Laboratory in Flavor and Fragrance Basic Research, Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou, China.

Cigar tobacco leaves exhibited distinct regional characteristics, and aroma compounds were the key substances determining the different style features of cigars. However, the differences in aroma characteristics and the mechanisms of key aroma compound synthesis have not been fully elucidated. This study collected filler tobacco leaves (FTLs) from 5 representative domestic and international production regions.

View Article and Find Full Text PDF

Correlation of lipid hydrolysis, oxidation, and molecular transformation with volatile compound revolution in pork during postmortem wet-aging process.

Food Chem

December 2024

Key Laboratory of Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Beijing University of Agriculture, Beijing 102206, PR China.

Lipid hydrolysis and oxidation properties, lipid metabolites, and volatile flavors were investigated to elucidate the wet-aging process (1 h to 10 d) on lipid molecule transformation and volatile flavor evolution in pork. Phospholipase A (PLA) activity increased at 12 h, with lipoxygenase (LOX) increasing from 1 h to 7 d (P < 0.05).

View Article and Find Full Text PDF

Effect of lysine on the cysteine-xylose Maillard reaction to form flavor compounds.

Food Chem

December 2024

School of Light Industry Science and Engineering, School of Food Science and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.. Electronic address:

To understand flavor formation mechanisms in complex meat-like Maillard systems, effect of lysine on cysteine-xylose reaction to form flavors was studied. GC-MS and GC-O analyses found lysine of 1 times cysteine concentration led to the greatest amount of sulfur-containing meaty compounds while more additional lysine caused more pyrazine compounds. LC-MS analysis showed lysine competed with cysteine to form the early-stage intermediate of Lys-Amadori compounds and accelerated conversion of 2-threityl-thiazolidine-4-carboxylic acids to Cys-Amadori compounds from the cysteine-xylose reaction.

View Article and Find Full Text PDF

Comparative analysis of sensory properties and chemical composition in grape spirits: Pervaporation separation vs. distillation.

Food Chem

December 2024

Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China. Electronic address:

To clarify the effects of pervaporation and distillation on aroma profiles, the Sensomics approach investigated the aroma characteristics and key aroma compounds of Cabernet Sauvignon (CS) and Ugni Blanc (UB) grape spirits produced by pervaporation (UB-P, CS-P) and distillation (UB-D, CS-D). The results indicated that pervaporated grape spirits exhibited stronger floral and fruity aromas, while distilled grape spirits were characterized by more pronounced cooked apple and toasty aromas. Consumers preferred products with intense floral and fruity aromas and weaker cooked apple note.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!