Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Using linear scaling theory, we study the behavior of response functions extrema in the vicinity of the critical point. We investigate how the speed of convergence of the loci of response function extrema to the Widom line depends on the parameters of the linear scaling theory. We find that when the slope of the coexistence line is near zero, the line of specific heat maxima does not follow the Widom line but instead follows the coexistence line. This has relevance for the detection of liquid-liquid critical points, which can exhibit a near-horizontal coexistence line. Our theoretical predictions are confirmed by computer simulations of a family of spherically symmetric potentials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.112.135701 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!