We report the observation of efficient steering of a 855 MeV electron beam at MAMI (MAinzer MIkrotron) facilities by means of planar channeling and volume reflection in a bent silicon crystal. A 30.5 μm thick plate of (211) oriented Si was bent to cause quasimosaic deformation of the (111) crystallographic planes, which were used for coherent interaction with the electron beam. The experimental results are analogous to those recorded some years ago at energy higher than 100 GeV, which is the only comparable study to date. Monte Carlo simulations demonstrated that rechanneling plays a considerable role in a particle's dynamics and hinders the spoiling of channeled particles. These results allow a better understanding of the dynamics of electrons subject to coherent interactions in a bent silicon crystal in the sub-GeV energy range, which is relevant for realization of innovative x-ray sources based on channeling in periodically bent crystals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.112.135503 | DOI Listing |
Food Chem
January 2025
Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Faculty of Medicinal Plants and Pharmacognosy, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China. Electronic address:
Currently, there remains a debate regarding the functional microorganisms responsible for the quality formation of Guang Chenpi (GCP). Thus, the metabolite profiles and microbial diversity of GCP samples subjected to natural treatment versus those sterilized via electron beam irradiation were investigated over a three-year period. It was found the main constituents of GCP were influenced both by spontaneous changes and microbial activity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Walter Schottky Institute, Technical University of Munich, Garching 85748, Germany.
Zinc nitride (ZnN) comprises earth-abundant elements, possesses a small direct bandgap, and is characterized by high electron mobility. While these characteristics make the material a promising compound semiconductor for various optoelectronic applications, including photovoltaics and thin-film transistors, it commonly exhibits unintentional degenerate n-type conductivity. This degenerate character has significantly impeded the development of ZnN for technological applications and is commonly assumed to arise from incorporation of oxygen impurities.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Switchable order parameters in ferroic materials are essential for functional electronic devices, yet disruptions of the ordering can take the form of planar boundaries or defects that exhibit distinct properties from the bulk, such as electrical (polar) or magnetic (spin) response. Characterizing the structure of these boundaries is challenging due to their confined size and three-dimensional (3D) nature. Here, a chemical antiphase boundary in the highly ordered double perovskite PbMgWO is investigated using multislice electron ptychography.
View Article and Find Full Text PDFMicrosc Res Tech
January 2025
Covestro (Netherlands) B.V., Waalwijk, The Netherlands.
By applying various image analysis methods, the distribution of titania pigments in water-based paint films is assessed in this work. Cross-sections of paint films containing titania are prepared using triple ion beam milling, and the milled cross-sections are imaged using scanning electron microscopy. The obtained morphology of the paint films with known difference in pigment distribution is then determined and quantified by means of image analysis.
View Article and Find Full Text PDFNano Lett
January 2025
Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China.
Rare-earth (RE) metals are known as industrial vitamins and show significant regulatory effects in many fields. In this work, we first demonstrated that the vitamin effect of RE metals can also be applied to extreme ultraviolet (EUV) lithography. Using a SnRE oxo cluster as the universal platform, different individual RE metal ions were successfully doped to obtain a series of isomorphic heterometallic clusters (RE = Y, Sm, Eu, Ho, Er).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!