It is important to elucidate the effects of carbon nanotubes on cell functions for their biomedical applications. In this study, the effect of single-walled carbon nanotubes (SWCNTs) on the mechanical property of chondrocytes was investigated by atomic force microscopy. Chondrocytes were cultured in medium containing SWCNTs and showed an increase uptake of SWCNTs with culture time. The mechanical property of chondrocytes cultured with or without SWCNTs was measured at an indentation depth of 200 nm and 500 nm. The chondrocytes cultured with SWCNTs showed higher Young's modulus than that of cells cultured without SWCNTs at both indentation depths. The increase became significant after culture for more than 3 hours. Indentation at 500 nm depth magnified the change of Young's modulus compared to that monitored at 200 nm indentation depth. The results indicated uptake of SWCNTs increased the Young's modulus of chondrocytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2014.8529 | DOI Listing |
ACS Nano
January 2025
Graduate Institute of Ferrous & Eco Materials Technology (GIFT), Pohang University of Science and Technology University, Pohang 37666, Republic of Korea.
Lattice volume changes in Li-ion batteries active materials are unavoidable during electrochemical cycling, posing significant engineering challenges from the particle to the electrode level. In this study, we present an elastic framework coating designed to absorb and reversibly release strain energy associated with particle volume changes, thereby enhancing mechanical resilience at both the particle and electrode levels. This framework, composed of multiwalled carbon nanotubes (MWCNTs), is applied to nickel-rich LiNiCoMnO (NCM9055) cathodes at a low loading of 0.
View Article and Find Full Text PDFFront Chem
December 2024
Circa Renewable Chemistry Institute, Department of Chemistry, University of York, York, United Kingdom.
This study focuses on the fabrication and characterisation of single-walled carbon nanotube (SWCNT) buckypapers and polyethersulfone (PES) flat-sheet membranes using Cyrene, aiming toevaluate its efficacy as a green solvent for these applications. Pristine SWCNTs were dispersed inCyrene without surfactants and compared to N-Methyl-2-pyrrolidone (NMP) dispersions. Buckypapers were fabricated from these dispersions and characterised using Scanning ElectronMicroscopy (SEM), Atomic Force Microscopy (AFM), and infrared spectroscopy.
View Article and Find Full Text PDFNanoscale
January 2025
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
The rational design of advanced oxygen reduction reaction (ORR) catalysts is essential to improve the performance of energy conversion devices. However, it remains a huge challenge to construct hierarchical micro-/meso-/macroporous nanostructures, especially mesoporous transport channels in catalysts, to enhance catalytic capability. Herein, motivated by the characteristics of energetic metal-organic frameworks (EMOFs) that produce an abundance of gases during high-temperature pyrolysis, we prepared a unique tetrazine-based EMOF-derived electrocatalyst (denoted as FeC@NSC-900) consisting of highly dispersed FeC nanoparticles and N,S-codoped mesoporous carbon nanotubes.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Loyola College, Affiliated to the University of Madras, Chennai, 600034, India.
This study involves a novel CuO/CoFe₂O₄/MWCNTs (CCT) nanocomposite, developed by integrating cobalt ferrite (CoFe₂O₄) and copper oxide (CuO) nanoparticles onto multi-walled carbon nanotubes (MWCNTs), for the degradation of tetracycline (TC) under visible light. The photocatalyst was extensively characterized using XRD, HR-SEM, EDX, HR-TEM, UV-Vis, BET, and PL analysis. The synthesized CoFe₂O₄ and CuO nanoparticles exhibited crystallite sizes of 46.
View Article and Find Full Text PDFNat Commun
January 2025
School of Materials Science and Engineering, Peking University, Beijing, China.
In the realm of modern materials science, horizontally aligned carbon nanotube arrays stand as promising materials for the development of next-generation integrated circuits. However, their large-scale integration has been impeded by the constraints of current fabrication techniques, which struggle to achieve the necessary uniformity, density, and size control of carbon nanotube arrays. Overcoming this challenge necessitates a significant shift in fabrication approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!