Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Lipopolysaccharides (LPS) are extremely strong stimulators of inflammatory reactions, act at very low concentrations, and are involved in the pathogenesis of sepsis and septic shock. Because of its toxicity, the efficient removal of endotoxin from patients' blood is very important in clinical medicine. The purpose of this study was to determine the endotoxin adsorption capacities of commercial endotoxin adsorbers for endotoxin removal in buffer solution, protein solution, serum and heparinized plasma; some of these were also characterized in whole blood. The tested LPS adsorbers were Toraymyxin® PMX-20R, Alteco® LPS Adsorber, DEAE-Sepharose, Polymyxin B-Agarose, and EndoTrap® red.
Methods: The adsorber materials were tested in buffer and protein solutions spiked with fluorescently labeled LPS (100 ng/ml). Additionally, batch tests with LPS-spiked serum, heparinized plasma and whole blood were performed with an LPS concentration of 5 ng/ml. Additionally, the washing solutions of the two tested Polymyxin B (PMB)-based adsorbers were analyzed for PMB release to determine if the resulting LPS inactivation was caused by PMB leakage.
Results: The results show that DEAE-Sepharose was most effective in LPS adsorption. Of the other tested endotoxin removal materials, only the PMB-based adsorbers were able to reduce the LPS activity. However, we were able to show that the reduction in LPS activity was caused by desorbed PMB, which inactivates endotoxins.
Conclusions: None of the adsorbents that were tested in this study showed promising results for potential use in extracorporeal blood purification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5301/ijao.5000304 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!