Induction of the antioxidant enzyme heme oxygenase-1 (HO-1) affords cellular protection and suppresses proliferation of vascular smooth muscle cells (VSMCs) associated with a variety of pathological cardiovascular conditions including myocardial infarction and vascular injury. However, the underlying mechanisms are not fully understood. Over-expression of Cav3.2 T-type Ca(2+) channels in HEK293 cells raised basal [Ca(2+)]i and increased proliferation as compared with non-transfected cells. Proliferation and [Ca(2+)]i levels were reduced to levels seen in non-transfected cells either by induction of HO-1 or exposure of cells to the HO-1 product, carbon monoxide (CO) (applied as the CO releasing molecule, CORM-3). In the aortic VSMC line A7r5, proliferation was also inhibited by induction of HO-1 or by exposure of cells to CO, and patch-clamp recordings indicated that CO inhibited T-type (as well as L-type) Ca(2+) currents in these cells. Finally, in human saphenous vein smooth muscle cells, proliferation was reduced by T-type channel inhibition or by HO-1 induction or CO exposure. The effects of T-type channel blockade and HO-1 induction were non-additive. Collectively, these data indicate that HO-1 regulates proliferation via CO-mediated inhibition of T-type Ca(2+) channels. This signalling pathway provides a novel means by which proliferation of VSMCs (and other cells) may be regulated therapeutically.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4293494 | PMC |
http://dx.doi.org/10.1007/s00424-014-1503-5 | DOI Listing |
Cell Calcium
January 2025
Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, NV, 89557, USA. Electronic address:
Interstitial cells of Cajal in the plane of the myenteric plexus (ICC-MY) serve as electrical pacemakers in the stomach and small intestine. A similar population of cells is found in the colon, but these cells do not appear to generate regular slow wave potentials, as characteristic in more proximal gut regions. Ca handling mechanisms in ICC-MY of the mouse proximal colon were studied using confocal imaging of muscles from animals expressing GCaMP6f exclusively in ICC.
View Article and Find Full Text PDFCurr Top Med Chem
January 2025
Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
Background: Several chemical studies described the physiological efficacy of 1,4- dihydropyridines (DHPs). DHPs bind to specific sites on the α1 subunit of L-type calcium channels, where they demonstrate a more pronounced inhibition of Ca2+ influx in vascular smooth muscle compared to myocardial tissue. This selective inhibition is the basis for their preferential vasodilatory action on peripheral and coronary arteries, a characteristic that underlies their therapeutic utility in managing hypertension and angina.
View Article and Find Full Text PDFJ Pharmacol Sci
December 2024
Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Japan. Electronic address:
We tested the hypothesis that Ca3.2 T-type Ca channels, which can be rebooted by sulfides from Zn inhibition under physiological conditions, and sulfide-generating enzymes including cystathionine-β-synthase (CBS) would participate in the colitis-related visceral pain in mice treated with 2,4,6-trinitrobenzene sulfonic acid (TNBS). The visceral hypersensitivity following TNBS-induced colitis was abolished by an inhibitor or genetic deletion of Ca3.
View Article and Find Full Text PDFElife
November 2024
Department of Neuroscience, University of Texas-Austin, Austin, United States.
In congenital stationary night blindness, type 2 (CSNB2)-a disorder involving the Ca1.4 (L-type) Ca channel-visual impairment is mild considering that Ca1.4 mediates synaptic release from rod and cone photoreceptors.
View Article and Find Full Text PDFAltern Ther Health Med
October 2024
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!