Change of floral orientation within an inflorescence affects pollinator behavior and pollination efficiency in a bee-pollinated plant, Corydalis sheareri.

PLoS One

Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.

Published: June 2015

Vertical raceme or spike inflorescences that are bee-pollinated tend to present their flowers horizontally. Horizontal presentation of flowers is hypothesized to enhance pollinator recognition and pollination precision, and it may also ensure greater consistency of pollinator movement on inflorescences. We tested the hypotheses using bee-pollinated Corydalis sheareri which has erect inflorescences consisting of flowers with horizontal orientation. We altered the orientation of individual flowers and prepared three types of inflorescences: (i) unmanipulated inflorescences with horizontal-facing flowers, (ii) inflorescences with flowers turned upward, and (iii) inflorescences with flowers turned downward. We compared number of inflorescences approached and visited, number of successive probes within an inflorescence, the direction percentage of vertical movement on inflorescences, efficiency of pollen removal and seed production per inflorescence. Deviation from horizontal orientation decreased both approaches and visits by leafcutter bees and bumble bees to inflorescences. Changes in floral orientation increased the proportion of downward movements by leafcutter bees and decreased the consistency of pollinator movement on inflorescences. In addition, pollen removal per visit and seed production per inflorescence also declined with changes of floral orientation. In conclusion, floral orientation seems more or less optimal as regards bee behavior and pollen transfer for Corydalis sheareri. A horizontal orientation may be under selection of pollinators and co-adapt with other aspects of the inflorescence and floral traits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3990675PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0095381PLOS

Publication Analysis

Top Keywords

floral orientation
16
corydalis sheareri
12
movement inflorescences
12
horizontal orientation
12
inflorescences
11
orientation
8
consistency pollinator
8
pollinator movement
8
inflorescences flowers
8
flowers turned
8

Similar Publications

Background And Aims: Seed dispersal impacts plant fitness by shaping the habitat and distribution of offspring, influencing population dynamics and spatial genetic diversity. Whether the evolution of dispersal strategies varies across herbaceous life forms (annual, perennial, clonal) is inconclusive. This study examines how seed dispersal strategies vary between annual and perennial populations of Mimulus guttatus (syn.

View Article and Find Full Text PDF

The ARF gene family plays a vital role in regulating multiple aspects of plant growth and development. However, detailed research on the role of the ARF family in regulating flower development in petunia and other plants remains limited. This study investigates the distinct roles of and in flower development.

View Article and Find Full Text PDF

The development of hooded awns in barley: From ectopic Kap1 expression to yield potential.

Gene

January 2025

College of Eco-environmental Engineering, Qinghai University, Xining 810016, Qinghai, China. Electronic address:

Awns in barley have different shapes including awnless, straight, hooded, crooked, and leafy awns. The hooded awns are characterized by an appendage of the lemma, which forms a trigonal or cap-shaped structure, and even blossoms and yields fruits on barley awn. In the lemma primordia of wild-type (straight awn), cells divide and elongate to form the straight awn.

View Article and Find Full Text PDF

Evolution from mixed to fixed handedness in mirror-image flowers: insights from adaptive dynamics.

Evolution

December 2024

Mathematical and Statistical Methods (Biometris), Plant Science Group, Wageningen University, Wageningen, The Netherlands.

Mirror-image flowers (enantiostyly) involve a form of sexual asymmetry in which a flower's style is deflected either to the left or right side, with a pollinating anther orientated in the opposite direction. This curious floral polymorphism, which was known but not studied by Charles Darwin, occurs in at least 11 unrelated angiosperm families and represents a striking example of adaptive convergence in form and function associated with cross-pollination by insects. In several lineages, dimorphic enantiostyly (one stylar orientation per plant, both forms occurring within populations) has evolved from monomorphic enantiostyly, in which all plants can produce both style orientations.

View Article and Find Full Text PDF

Flowers meet Newton: testing the role of gravitational pull in resupination of orchid flowers.

J Exp Bot

January 2025

Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil.

Resupination refers to the developmental orientation changes of flowers through ~180°, leaving them effectively upside-down. It is a widespread trait present in 14 angiosperm families, including the Orchidaceae, where it is a gravitropic phenomenon actively controlled by auxins. Here, we demonstrate that the passive gravitational pull on flower parts can have an additional influence on resupination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!