DNA:RNA hybrid formation is emerging as a significant cause of genome instability in biological systems ranging from bacteria to mammals. Here we describe the genome-wide distribution of DNA:RNA hybrid prone loci in Saccharomyces cerevisiae by DNA:RNA immunoprecipitation (DRIP) followed by hybridization on tiling microarray. These profiles show that DNA:RNA hybrids preferentially accumulated at rDNA, Ty1 and Ty2 transposons, telomeric repeat regions and a subset of open reading frames (ORFs). The latter are generally highly transcribed and have high GC content. Interestingly, significant DNA:RNA hybrid enrichment was also detected at genes associated with antisense transcripts. The expression of antisense-associated genes was also significantly altered upon overexpression of RNase H, which degrades the RNA in hybrids. Finally, we uncover mutant-specific differences in the DRIP profiles of a Sen1 helicase mutant, RNase H deletion mutant and Hpr1 THO complex mutant compared to wild type, suggesting different roles for these proteins in DNA:RNA hybrid biology. Our profiles of DNA:RNA hybrid prone loci provide a resource for understanding the properties of hybrid-forming regions in vivo, extend our knowledge of hybrid-mitigating enzymes, and contribute to models of antisense-mediated gene regulation. A summary of this paper was presented at the 26th International Conference on Yeast Genetics and Molecular Biology, August 2013.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3990523PMC
http://dx.doi.org/10.1371/journal.pgen.1004288DOI Listing

Publication Analysis

Top Keywords

dnarna hybrid
24
hybrid prone
12
dnarna
8
prone loci
8
profiles dnarna
8
hybrid
6
genome-wide profiling
4
profiling yeast
4
yeast dnarna
4
prone sites
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!