The purpose of the present study was to compare the location of the body center of mass (CoM) determined by using a high accuracy reaction board (RB) and two different segment parameter models for motion analysis (Dempster, 1955, DEM and de Leva, 1996 adjusted from Zatsiorsky and Seluyanov, ZAT). The body CoM (expressed as percentage of the total body height) was determined from several subjects including athletes as well as physically active students and sedentary people. Some significant differences were found in the location of the body CoM between the used segment models and the reaction board method for all male subjects (n=58, 57.03±0.79%, 56.20±0.76% and 57.60±0.76% for RB, ZAT and DEM, respectively) and separately for male (n=12, RB 57.02±0.41%, ZAT 56.74±0.62%, DEM 58.19±0.60%) and female (n=12, RB 55.91±0.88%, ZAT 57.24±0.77%) students of physical activity. The ZAT model was a good match with RB for high jumpers (56.26±0.94% and 56.63±0.56%) whereas the DEM model was better for gymnasts (57.38±0.46% and 57.89±0.49%) and throwers (58.19±0.69% and 57.79±0.45%). For ice hockey players (IH) and ski jumpers (SJ) both segment models, ZAT and DEM, differed significantly from the reaction board results. The results of the present study showed that careful attention should be paid while selecting the proper model for motion analysis of different type of athletes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiomech.2014.04.001 | DOI Listing |
Chem Rec
January 2025
Bioinspired & Biomimetic Inorganic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala, 673601, India.
Direct methane to methanol conversion is a dream reaction in industrial chemistry, which takes inspiration from the biological methanol production catalysed by methane monooxygenase enzymes (MMOs). Over the years, extensive studies have been conducted on this topic by bioengineering the MMOs, and tailoring methods to isolate the MMOs in the active form. Similarly, remarkable achievements have been noted in other methane activation strategies such as the use of heterogeneous catalysts or molecular catalysts.
View Article and Find Full Text PDFFront Parasitol
May 2024
Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands.
Detection of spp. DNA in gynaecological samples by quantitative real-time polymerase chain reaction (qPCR) is considered to be the reference diagnostic test for female genital schistosomiasis (FGS). However, qPCR needs expensive laboratory procedures and highly trained technicians.
View Article and Find Full Text PDFFront Parasitol
February 2024
National Reference Center for Parasitology, Research Institute of the McGill University Center, Montreal, QC, Canada.
The Polymerase Chain Reaction (PCR) test is a highly sensitive, specific, and rapid diagnostic tool for Chagas disease. Chagas disease is caused by the protozoan flagellate and is endemic to the Americas. While conventional serological methods are still used in the diagnosis of Chagas disease, they are being gradually replaced by molecular methods like PCR.
View Article and Find Full Text PDFFront Parasitol
March 2024
Center for Research in Infectious Diseases, College of Graduate Studies and Research, Mount Kenya University, Thika, Kenya.
Introduction: Schistosomiasis (Bilharzia), a neglected tropical disease caused by parasites, afflicts over 240 million people globally, disproportionately impacting Sub-Saharan Africa. Current diagnostic tests, despite their utility, suffer from limitations like low sensitivity. Polymerase chain reaction (PCR) and quantitative real-time PCR (qPCR) remain the most common and sensitive nucleic acid amplification tests.
View Article and Find Full Text PDFJ Spine Surg
December 2024
Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical School, University of New South Wales, Sydney, AUS.
Background: Implant fixation is often the cornerstone of musculoskeletal surgical procedures performed to provide bony fixation and/or fusion. The aim of this study was to evaluate how different design features and manufacturing methods influence implant osseointegration and mechanical properties associated with fixation in a standardized model in cancellous bone of adult sheep.
Methods: We evaluated the performance of three titanium alloy implants: (A) iFuse-TORQ implant; (B) Fenestrated Sacroiliac Device; and (C) Standard Cancellous Bone Screw in the cancellous bone of the distal femur and proximal tibia in 8 sheep.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!