A stepwise mutation that occurred in both pathogens and their respective hosts has played a seminal role in the co-evolutionary arms race evolution in diverse pathosystems. The process driven by rice blast AvrPik and Pik alleles was investigated through population genetic and evolutionary approaches. The genetic diversity of the non-signal domain of AvrPik was higher than that in its signal peptide domain. Positive selection for particular AvrPik alleles in the northeastern region of China was stronger than in the south. The perfect relationship between the functional lineages and AvrPik allele-specific pathotypes was established by ruling out the nonfunctional lineages derived from additional copies. Only four alleles conditioning stepwise pathotypes were detected in natural populations, which were likely created by only one evolutionary pathway with three recognizable mutation steps. Two non-stepwise pathotypes were determined by two blocks in a network constructed by all 16 possible alleles, indicating that a natural evolution process can be artificially changed by a combination of specific single-nucleotide polymorphisms. Assuming that AvrPik evolution has been largely driven by host selection, the co-evolutionary stepwise relationships between AvrPik and Pik was established. The experimental validation of stepwise mutation is required for the development of sustainable management strategies against plant disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/MPMI-02-14-0046-R | DOI Listing |
Plant Dis
January 2025
USDA-ARS SEA, Dale Bumpers National Rice Research Center, Stuttgart, Arkansas, United States;
Major resistance (R) gene mediated resistance to rice blast fungus Magnaporthe oryzae is often overcome by the fungus due to the occurrences of new races with altered corresponding avirulence (AVR) genes. In this study, blast diseased rice tissue samples were collected from breeding stations and commercial rice fields in Arkansas, Louisiana, and Puerto Rico during 2017-2019 to determine the efficacy of major R genes, Pi-ta, Pik, Pizt, Pi9, and Pi33. A total of 185 blast isolates were isolated from the diseased tissue samples to examine the existence of AVR genes AVR-Pita1, AVR-Pib, AVR-Pik, AVR-Pizt, AVR-Pi9 and ACE1.
View Article and Find Full Text PDFPlant Dis
December 2024
China National Rice Research Institute, State Key Laboratory of Rice Biology and Breeding, Hangzhou, Zhejiang, China;
The avirulence (AVR) genes of Magnaporthe oryzae are pivotal in eliciting resistance responses in rice, which are mediated by resistance (R) genes in rice. Monitoring the variation of AVR genes in the pathogen is essential for strategically deploying R genes in rice cultivation regions. In this study, a total of 214 isolates were collected from Jiangxi Province, China, in 2022, and the distribution and variation of AVR genes in these isolates were analyzed by PCR amplification and sequencing.
View Article and Find Full Text PDFIntracellular nucleotide-binding domain and leucine-rich repeat-containing (NLR) receptors play crucial roles in immunity across multiple domains of life. In plants, a subset of NLRs contain noncanonical integrated domains that are thought to have evolved from host targets of pathogen effectors to serve as pathogen baits. However, the functions of host proteins with similarity to NLR integrated domains and the extent to which they are targeted by pathogen effectors remain largely unknown.
View Article and Find Full Text PDFPlant Cell Environ
December 2024
Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China.
In the ongoing arms race between rice and Magnaporthe oryzae, the pathogen employs effectors to evade the immune response, while the host develops resistance genes to recognise these effectors and confer resistance. In this study, we identified a novel Pik allele, Pik-W25, from wild rice WR25 through bulked-segregant analysis, creating the Pik-W25 NIL (Near-isogenic Lines) named G9. Pik-W25 conferred resistance to isolates expressing AvrPik-C/D/E alleles.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2024
Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, United Kingdom.
Bioengineering of plant immune receptors has emerged as a key strategy for generating novel disease resistance traits to counteract the expanding threat of plant pathogens to global food security. However, current approaches are limited by rapid evolution of plant pathogens in the field and may lack durability when deployed. Here, we show that the rice nucleotide-binding, leucine-rich repeat (NLR) immune receptor Pik-1 can be engineered to respond to a conserved family of effectors from the multihost blast fungus pathogen .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!