Sampling techniques to detect airborne Salmonella species (spp.) in two pilot scale broiler houses were compared. Broilers were inoculated at seven days of age with a marked strain of Salmonella enteritidis. The rearing cycle lasted 42 days during the summer. Airborne Salmonella spp. were sampled weekly using impaction, gravitational settling, and impingement techniques. Additionally, Salmonella spp. were sampled on feeders, drinkers, walls, and in the litter. Environmental conditions (temperature, relative humidity, and airborne particulate matter (PM) concentration) were monitored during the rearing cycle. The presence of Salmonella spp. was determined by culture-dependent and molecular methods. No cultivable Salmonella spp. were recovered from the poultry houses' surfaces, the litter, or the air before inoculation. After inoculation, cultivable Salmonella spp. were recovered from the surfaces and in the litter. Airborne cultivable Salmonella spp. Were detected using impaction and gravitational settling one or two weeks after the detection of Salmonella spp. in the litter. No cultivable Salmonella spp. were recovered using impingement based on culture-dependent techniques. At low airborne concentrations, the use of impingement for the quantification or detection of cultivable airborne Salmonella spp. is not recommended. In these cases, a combination of culture-dependent and culture-independent methods is recommended. These data are valuable to improve current measures to control the transmission of pathogens in livestock environments and for optimising the sampling and detection of airborne Salmonella spp. in practical conditions.

Download full-text PDF

Source

Publication Analysis

Top Keywords

salmonella spp
40
airborne salmonella
20
cultivable salmonella
16
salmonella
13
spp recovered
12
spp
11
sampling techniques
8
techniques detect
8
airborne
8
detect airborne
8

Similar Publications

Introduction: The increase of antimicrobial resistance (AMR) in zoonotic pathogens poses a substantial threat to both animal production and human health. Although large-scale animal farms are acknowledged as major reservoirs for AMR, there is a notable knowledge gap concerning AMR in small-scale farms. This study seeks to address this gap by collecting and analyzing 137 fecal samples from goat and sheep farms in Tennessee and Georgia.

View Article and Find Full Text PDF

The quality and safety of fish products are crucial because poorly handled fish products can result in foodborne illnesses, spoilage, and economic losses. Data on the nutritional and microbiological quality of fish products in Ethiopia, especially in Lake Tana, is limited. This study assessed the proximate composition and microbial quality of raw and open sun-dried fish products in Lake Tana.

View Article and Find Full Text PDF

Background: Wild game meat has over the years gained popularity across the globe as it is considered a food source with high protein content, low fat content, and a balanced composition of fatty acids and minerals, which are requirements for a healthy diet. Despite this popularity, there is a concern over its safety as many species of wildlife are reservoirs of zoonotic diseases including those of bacterial origin, more so antibiotic-resistant bacteria.

Methods: This study aimed to describe the prevalence of antibiotic-resistant bacteria in mammalian wild game, following the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines.

View Article and Find Full Text PDF

Valorization of mixed blackwater/agricultural wastes for bioelectricity and biohydrogen production: A microbial treatment pathway.

Heliyon

January 2025

African Centre of Excellence in Future Energies and Electrochemical Systems (ACE-FUELS), Federal University of Technology, Owerri, PMB 1526, Imo State, Nigeria.

The management of wastewater and agricultural wastes has been limited by the separate treatment processes, which exacerbate pollution and contribute to climate change through greenhouse gas emissions. Given the energy demands and financial burdens of traditional treatment facilities, there is a pressing need for technologies that can concurrently treat solid waste and generate energy. This study aimed to evaluate the feasibility of producing bioelectricity and biohydrogen through the microbial treatment of blackwater and agricultural waste using a dual-chamber Microbial Fuel Cell (MFC).

View Article and Find Full Text PDF

Lactic acid bacteria (LAB), known for their health benefits, exhibit antimicrobial and antibiofilm properties. This study investigated the cell-free supernatant (CFS) of spp., particularly KR3, against the common foodborne pathogens , and spp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!