Introducing a new azoaromatic pincer ligand. Isolation and characterization of redox events in its ferrous complexes.

Inorg Chem

Department of Inorganic Chemistry, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700032, India.

Published: May 2014

The isolation and complete characterization of a new bis-azoaromatic ligand, 2,6-bis(phenylazo)pyridine (L), are described, and its coordination to iron(II) is reported. A pseudo-trigonal-bipyramidal mixed-ligand complex of iron(II), FeLCl2 (1), and a homoleptic octahedral iron complex, mer-[Fe(L)2]ClO4 [2]ClO4, have been synthesized from L and FeCl2 or hydrated Fe(ClO4)2, respectively, in boiling methanol. Determination of the X-ray crystallographic structure together with magnetic data (≈ 5.06 μB) and Mössbauer analysis of 1 established a high-spin Fe(II) complex ligated by one neutral 2,6-bis(phenylazo)pyridine ligand. The X-ray crystallographic structure (showing dN-N > 1.30 Å), Mössbauer data, and magnetic susceptibility measurements (≈ 1.65 μB) as well as a nearly isotropic EPR signal with only a small metal contribution at g = 1.968, on the other hand, suggest a low-spin Fe(II) complex with a one-electron-reduced radical ligand coordination in [2]ClO4. The ligand and the metal complexes have well-behaved redox properties, with the ligand(s) functioning as the redox-active site(s) responsible for redox events. The uncoordinated ligand, L, displays a reversible one-electron wave at -1.07 V and a quasi-reversible wave at -1.39 V. The partially reduced ligand L(•-) shows a single-line EPR spectrum at g = 2.001, signifying that L(•-) is a free radical. While complex 1 shows a reversible reduction at -0.08 V and an irreversible cathodic response at -0.98 V, the bis-chelate [2]ClO4 undergoes a reversible one-electron oxidation at 0.54 V and three successive reversible one-electron reductions at -0.18, -0.88, and -1.2 V, all occurring at the ligands without affecting the metal ion oxidation state. The electronic structures of the parent monocationic complex [2](+) and its oxidized and reduced forms, generated by exhaustive electrolyses, have been characterized by using a host of spectroscopic techniques and density functional theory (DFT). It is found that the 2,6-bis(phenylazo)pyridine ligand (L) is truly redox noninnocent and is capable of coordinating transition-metal centers in its neutral ([L](0)), monoanionic monoradical ([L(•)](-)), and dianionic diradical ([L(••)](2-)) forms.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic500355fDOI Listing

Publication Analysis

Top Keywords

reversible one-electron
12
ligand
8
redox events
8
x-ray crystallographic
8
crystallographic structure
8
feii complex
8
26-bisphenylazopyridine ligand
8
complex
6
introducing azoaromatic
4
azoaromatic pincer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!