Background: The performance of probes on an oligonucleotide microarray can be characterised in terms of hybridisation signal strength and the ability to discriminate sequence mismatches between the probe and the hybridising target strand, such as those resulting from SNPs. Various properties of the probe affect mismatch discrimination, such as probe length and the position of mismatched bases, and the effects of these factors have been well characterised in a variety of array formats.
Results: A low-density microarray was developed to systematically investigate the effect of a probe's position within hybridised target PCR products on the tolerance and discrimination of single-nucleotide mismatches between the probe and target. In line with previous reports, hybridisation signals were attenuated by different degrees depending on the identity of the mismatch, the position of the mismatch within the probe, and the length of the PCR product. However, the same mismatch caused different degrees of attenuation depending on the position of the probe within the hybridising product, such that improved mismatch discrimination was observed for PCR products where a greater proportion of the total length was proximal to the array surface.
Conclusions: These results suggest that the degree of mismatch discrimination can be influenced by the choice of PCR primers, providing a means by which array performance could be fine-tuned in addition to manipulation of the properties of the probes themselves.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3997201 | PMC |
http://dx.doi.org/10.1186/1756-0500-7-251 | DOI Listing |
Int J Pediatr Otorhinolaryngol
January 2025
Level IV, Department of Health and Human Communication, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil. Electronic address:
Objective: To describe and compare the latencies and amplitudes of Mismatch Negativity between children with and without Developmental Dyslexia.
Methods: Cross-sectional and comparative study, consisting of a study group of 52 children with Developmental Dyslexia and a control group of 52 children with typical development, matched by age and sex, aged between 9 years and 11 years and 11 months of both sexes. All participants underwent Otoscopy, Acoustic Immittance Measurements, Pure Tone Audiometry, Speech Audiometry, Brainstem Auditory Evoked Potential and Mismatch Negativity.
Adv Sci (Weinh)
January 2025
Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
Emotion processing is an integral part of everyone's life. The basic neural circuits involved in emotion perception are becoming clear, though the emotion's cognitive processing remains under investigation. Utilizing the stereo-electroencephalograph with high temporal-spatial resolution, this study aims to decipher the neural pathway responsible for discriminating low-arousal and high-arousal emotions.
View Article and Find Full Text PDFAnal Chem
January 2025
Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China.
Isothermal nucleic acid amplification techniques are promising alternatives to polymerase chain reaction (PCR) for amplifying and detecting nucleic acids under resource-limited conditions. While many isothermal amplification strategies, such as recombinase polymerase amplification (RPA), offer comparable sensitivity to PCR, they often lack the specificity and robustness for discriminating single nucleotide variants (SNVs), mainly due to the uncontrolled production of massive amplicons. Herein, we introduce a mismatch-guided DNA assembly (MGDA) approach capable of discriminating SNVs in the presence of high concentrations of wild-type (WT) interferences.
View Article and Find Full Text PDFNeural Netw
January 2025
School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China. Electronic address:
Conditional adversarial domain adaptation (CADA) is one of the most commonly used unsupervised domain adaptation (UDA) methods. CADA introduces multimodal information to the adversarial learning process to align the distributions of the labeled source domain and unlabeled target domain with mode match. However, CADA provides wrong multimodal information for challenging target features due to utilizing classifier predictions as the multimodal information, leading to distribution mismatch and less robust domain-invariant features.
View Article and Find Full Text PDFAnal Chem
January 2025
Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
This study tackles the challenge of enantiodifferentiation of nitrile compounds, which is typically difficult to resolve using nuclear magnetic resonance (NMR) due to the significant distance between the chiral center and the nitrogen atom involved in molecular interactions. We have developed novel chiral F-labeled probes, each featuring two chiral centers, to exploit the "match-mismatch" effect, thereby enhancing enantiodiscrimination. This strategy effectively differentiates chiral analytes with quaternary chiral carbon centers as well as those with similar substituents at the chiral center.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!