Transcriptional and posttranscriptional regulations of the HLA-G gene.

J Immunol Res

Division of Clinical Immunology, Department of Medicine, School of Medicine of Ribeirao Preto, University of São Paulo (USP), 14049-900 Ribeirão Preto, SP, Brazil.

Published: December 2014

HLA-G has a relevant role in immune response regulation. The overall structure of the HLA-G coding region has been maintained during the evolution process, in which most of its variable sites are synonymous mutations or coincide with introns, preserving major functional HLA-G properties. The HLA-G promoter region is different from the classical class I promoters, mainly because (i) it lacks regulatory responsive elements for IFN-γ and NF-κB, (ii) the proximal promoter region (within 200 bases from the first translated ATG) does not mediate transactivation by the principal HLA class I transactivation mechanisms, and (iii) the presence of identified alternative regulatory elements (heat shock, progesterone and hypoxia-responsive elements) and unidentified responsive elements for IL-10, glucocorticoids, and other transcription factors is evident. At least three variable sites in the 3' untranslated region have been studied that may influence HLA-G expression by modifying mRNA stability or microRNA binding sites, including the 14-base pair insertion/deletion, +3142C/G and +3187A/G polymorphisms. Other polymorphic sites have been described, but there are no functional studies on them. The HLA-G coding region polymorphisms might influence isoform production and at least two null alleles with premature stop codons have been described. We reviewed the structure of the HLA-G promoter region and its implication in transcriptional gene control, the structure of the HLA-G 3'UTR and the major actors of the posttranscriptional gene control, and, finally, the presence of regulatory elements in the coding region.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3987962PMC
http://dx.doi.org/10.1155/2014/734068DOI Listing

Publication Analysis

Top Keywords

structure hla-g
12
coding region
12
promoter region
12
hla-g
9
hla-g coding
8
variable sites
8
hla-g promoter
8
responsive elements
8
regulatory elements
8
gene control
8

Similar Publications

Background: Stanford type B-acute aortic dissection (type B-AAD) is often life-threatening without invasive surgery. Multilineage-differentiating stress enduring cell (Muse cells), which comprise several percent of mesenchymal stem cells (MSCs), are endogenous pluripotent-like stem cells that selectively home to damaged tissue and replace damaged/apoptotic cells by in-vivo differentiation.

Methods: Mortality, aortic diameter expansion, cell localization, cell differentiation, and inflammation of the dissected aorta were evaluated in type B-AAD model mice intravenously injected with human-Muse cells, -elastin-knockdown (KD)-Muse cells, -human leukocyte antigen-G (HLA-G)-KD-Muse cells, or MSCs, all without immunosuppressant.

View Article and Find Full Text PDF

TBX3 reciprocally controls key trophoblast lineage decisions in villi during human placenta development in the first trimester.

Int J Biol Macromol

April 2024

Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China. Electronic address:

Human trophoblastic lineage development is intertwined with placental development and pregnancy outcomes, but the regulatory mechanisms underpinning this process remain inadequately understood. In this study, based on single-nuclei RNA sequencing (snRNA-seq) analysis of the human early maternal-fetal interface, we compared the gene expression pattern of trophoblast at different developmental stages. Our findings reveal a predominant upregulation of TBX3 during the transition from villous cytotrophoblast (VCT) to syncytiotrophoblast (SCT), but downregulation of TBX3 as VCT progresses into extravillous trophoblast cells (EVT).

View Article and Find Full Text PDF

Objective: The programed cell death gene-1 ligand (PDL-1) is expressed by villous syncytiotrophoblasts, cytotrophoblasts, and fetal cells in close contact with maternal tissue and blood. Programmed cell death gene-1 (PD-1) and the PDL-1 pathway cooperate with human leucocyte antigen-G (HLA-G), expressing intermediate trophoblastic cells and syncytiotrophoblasts to inhibit the function of activated T-cells. With this mechanism, the immunosuppressive microenvironment protects the placenta.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a progressive, inflammatory, autoimmune, symmetrical polyarticular arthritis. It is characterized by synovial infiltration and activation of several types of immune cells, culminating in their apoptosis and antibody generation against "altered" autoantigens. β2-microglobulin (β2m)-associated heavy chains (HCs) of HLA antigens, also known as closed conformers (Face-1), undergo "alteration" during activation of immune cells, resulting in β2m-free structural variants, including monomeric open conformers (Face-2) that are capable of dimerizing as either homodimers (Face-3) or as heterodimers (Face-4).

View Article and Find Full Text PDF

We took advantage of the increasingly evolving approaches for in silico studies concerning protein structures, protein molecular dynamics (MD), protein-protein and protein-DNA docking to evaluate: (i) the structure and MD characteristics of the HLA-G well-recognized isoforms, (ii) the impact of missense mutations at HLA-G receptor genes (LILRB1/2), and (iii) the differential binding of the hypoxia-inducible factor 1 (HIF1) to hypoxia-responsive elements (HRE) at the HLA-G gene. Besides reviewing these topics, they were revisited including the following novel results: (i) the HLA-G6 isoforms were unstable docked or not with β-microglobulin or peptide, (ii) missense mutations at LILRB1/2 genes, exchanging amino acids at the intracellular domain, particularly those located within and around the ITIM motifs, may impact the HLA-G binding strength, and (iii) HREs motifs at the HLA-G promoter or exon 2 regions exhibiting a guanine at their third position present a higher affinity for HIF1 when compared to an adenine at the same position. These data shed some light into the functional aspects of HLA-G, particularly how polymorphisms may influence the role of the molecule.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!