Anti-CD3 antibody has been employed for various immune-mediated disorders. However, whether anti-CD3 administration leads to rapid metabolic alternation has not been well investigated. In the current study, we studied how anti-CD3 treatment affected blood glucose levels in mice. We found that anti-CD3 treatment induced immediate reduction of blood glucose after administration. Furthermore, a single dose of anti-CD3 treatment corrected hyperglycemia in all nonobese diabetic mice with recently diagnosed diabetes. This glucose-lowering effect was not attributable to major T cell produced cytokines. Of interest, when tested in a normal strain of mice (C57BL/6), the serum levels of C-peptide in anti-CD3 treated animals were significantly lower than control mice. Paradoxically, anti-CD3 treated animals were highly tolerant to exogenous glucose challenge. Additionally, we found that anti-CD3 treatment significantly induced activation of T and B cells in vitro and in vivo. Further studies demonstrated that anti-CD3 treatment lowered the glucose levels in T cell culture media and increased the intracellular transportation of 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2 deoxyglucose (2-NBDG) particularly in activated T and B cells. In addition, injection of anti-CD3 antibodies induced enhanced levels of Glut1 expression in spleen cells. This study suggests that anti-CD3 therapy-induced hypoglycemia likely results from increased glucose transportation and consumption by the activated lymphocytes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3987876 | PMC |
http://dx.doi.org/10.1155/2014/326708 | DOI Listing |
ACS Nano
January 2025
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
The nanoengager strategy, which enhances receptor signaling responsiveness through a multivalent ligand binding mode, offers a promising approach for improving immune cell redirecting therapy. Increasing nanomaterial platforms have been developed for constructing more flexible and multifunctional nanoengagers, but the different mediating mechanisms from their multivalent nanostructures, compared to original monomolecule engagers, have rarely been discussed. Here, we constructed dual-specificity T cell nanoengagers (TNEs) targeting CD3 and PDL1 receptors based on a polyethylene glycol--polylactic acid (PEG--PLA)-assembled nanoparticle and specifically studied the impact of surface antibody valences on their functional mechanisms, thereby enhancing the structural advantages of TNEs against solid tumors.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of pharmacy, Xinxiang Medical University, 453003 Xinxiang, PR China; Pingyuan Laboratory, Xinxiang, Henan 453007, PR China. Electronic address:
Effective delivery of sufficient doxorubicin (DOX) molecules in tumors is hindered by the complex biological barriers. Herein, a DOX-loaded sodium alginate-based injectable hydrogel (DOX@MHB-conj-SA) was designed by the Michael addition reactions between the sulfydryl in cross-linkers and the double bonds in a derivative of sodium alginate. DOX@MHB-conj-SA was administrated to CT26 tumor-bearing mice via peritumoral injection for locoregional treatment of colorectal cancer by inducing apoptosis and pyroptosis.
View Article and Find Full Text PDFImmunol Cell Biol
December 2024
R&D, Sanquin Diagnostic Services, Amsterdam, The Netherlands.
Understanding antigen-specific T-cell responses is crucial for advancing immunotherapies and vaccine development. This study proposes a novel approach combining two complementary assays: the 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay (tracking proliferation over 0-48 h) and the VPD450 dye dilution assay (tracking proliferation over 4-6 days). Integrating these techniques provides additional insights into T-cell proliferation kinetics.
View Article and Find Full Text PDFJ Diabetes Res
December 2024
Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA.
Type 1 diabetes (T1D) is an autoimmune chronic disorder that damages beta cells in the pancreatic islets of Langerhans and results in hyperglycemia due to the loss of insulin. Exogenous insulin therapy can save lives but does not stop disease progression. Thus, an effective therapy may require beta cell restoration and suppression of the autoimmune response.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan.
Unlabelled: Human umbilical cord-derived mesenchymal stromal cells (UC-MSCs), which can be prepared in advance and are presumed to be advantageous for nerve regeneration, have potential as a cell source for Bio 3D conduits. The purpose of this study was to evaluate the nerve regeneration ability of Bio 3D conduits made from UC-MSCs using a rat sciatic nerve defect model.
Methods: A Bio 3D conduit was fabricated using a Bio 3D printer by placing UC-MSC spheroids into thin needles according to predesigned 3D data.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!