Altered cysteine dioxygenase 1 (CDO1) gene expression has been observed in several cancers but has not yet been investigated in liposarcomas. The aim of this study was to evaluate CDO1 expression in a cohort of liposarcomas and to determine its association with clinicopathological features. Existing microarray data indicated variable CDO1 expression in liposarcoma subtypes. CDO1 mRNA from a larger cohort of liposarcomas was quantified by real time-PCR, and CDO1 protein expression was determined by immunohistochemistry (IHC) in more than 300 tumor specimens. Well-differentiated liposarcomas (WDLSs) had significantly higher CDO1 gene expression and protein levels than dedifferentiated liposarcomas (DDLSs) (P < 0.001). Location of the tumor was not predictive of the expression level of CDO1 mRNA in any histological subtype of liposarcoma. Recurrent tumors did not show any difference in CDO1 expression when compared to primary tumors. CDO1 expression was upregulated as human mesenchymal stem cells (hMSCs) undergo differentiation into mature adipocytes. Our results suggest that CDO1 is a marker of liposarcoma progression and adipogenic differentiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3981480 | PMC |
http://dx.doi.org/10.4137/BIC.S14683 | DOI Listing |
Thorac Cancer
January 2025
Department of Thoracic Surgery and Lung Transplantation, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China.
Background: The mycobiome in the tumor microenvironment of non-smokers with early-stage lung adenocarcinoma (ES-LUAD) has been minimally investigated.
Methods: In this study, we conducted ultra-deep metagenomic and transcriptomic sequencing on 128 samples collected from 46 nonsmoking ES-LUAD patients and 41 healthy controls (HC), aiming to characterize the tumor-resident mycobiome and its interactions with the host.
Results: The results revealed that ES-LUAD patients exhibited fungal dysbiosis characterized by reduced species diversity and significant imbalances in specific fungal abundances.
Am J Physiol Gastrointest Liver Physiol
January 2025
Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104.
Bile acid sequestrants such as cholestyramine (ChTM) are gut-restricted bile acid binding resins that block intestine bile acid absorption and attenuate hepatic bile acid signaling. Bile acid sequestrants induce hepatic bile acid synthesis to promote cholesterol catabolism and are cholesterol lowering drugs. Bile acid sequestrants also reduce blood glucose in clinical trials and are approved drugs for treating hyperglycemia in type-2 diabetes.
View Article and Find Full Text PDFBiomolecules
November 2024
Experimental Mitochondrial Genetics Group, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide Health and Medical Sciences Building, Adelaide, SA 5000, Australia.
J Anim Sci
January 2024
Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan.
Taurine, biosynthesized from methionine or cysteine in the liver, plays a crucial regulatory role in bile acid conjugation, antioxidant effects, and glucose and cholesterol metabolism. This may influence the metabolic changes associated with fat accumulation in beef cattle. However, the physiological role of taurine in this species has not been fully elucidated.
View Article and Find Full Text PDFFront Cardiovasc Med
October 2024
Cardiology Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
Background: N6-methyladenosine (m6A) has been shown to mediate ferroptosis but its role in atherosclerosis (AS) is unclear.
Methods: Differentially expressed m6A-associated ferroptosis-related genes (DE-m6A-Ferr-RGs) were obtained using differential expression analysis and Pearson correlation analysis. Weighted gene co-expression network analysis (WGCNA) was also performed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!