E2F1 responds to ultraviolet radiation by directly stimulating DNA repair and suppressing carcinogenesis.

Cancer Res

Authors' Affiliations: Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park; and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TexasAuthors' Affiliations: Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park; and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas

Published: June 2014

AI Article Synopsis

  • In response to DNA damage, the E2F1 transcription factor is phosphorylated, which stabilizes it and aids in DNA repair.
  • A knock-in mouse model with a mutation that prevents E2F1 stabilization reveals impaired DNA repair but normal expression of E2F target genes.
  • Mice with this mutation show increased sensitivity to UV radiation and a higher risk of developing skin cancer, linking E2F1's role in DNA repair to tumor suppression.

Article Abstract

In response to DNA damage, the E2F1 transcription factor is phosphorylated at serine 31 (serine 29 in mouse) by the ATM or ATR kinases, which promotes E2F1 protein stabilization. Phosphorylation of E2F1 also leads to the recruitment of E2F1 to sites of DNA damage, where it functions to enhance DNA repair. To study the role of this E2F1 phosphorylation event in vivo, a knock-in mouse model was generated, in which serine 29 was mutated to alanine. The S29A mutation impairs E2F1 stabilization in response to ultraviolet (UV) radiation and doxorubicin treatment, but has little effect on the expression of E2F target genes. The apoptotic and proliferative responses to acute UV radiation exposure are also similar between wild-type and E2f1(S29A/) (S29A) mice. As expected, the S29A mutation prevents E2F1 association with damaged DNA and reduces DNA repair efficiency. Moreover, E2f1(S29A/) (S29A) mice display increased sensitivity to UV-induced skin carcinogenesis. This knock-in mouse model thus links the ability of E2F1 to directly promote DNA repair with the suppression of tumor development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4083823PMC
http://dx.doi.org/10.1158/0008-5472.CAN-13-3216DOI Listing

Publication Analysis

Top Keywords

dna repair
16
e2f1
9
ultraviolet radiation
8
dna damage
8
knock-in mouse
8
mouse model
8
s29a mutation
8
e2f1s29a/ s29a
8
s29a mice
8
dna
7

Similar Publications

We present a series of articles proving the existence of a previously unknown mechanism of interaction between hematopoietic stem cells and extracellular double-stranded DNA (and, in particular, double-stranded DNA of the peripheral bloodstream), which explains the possibility of emergence and fixation of genetic information contained in double-stranded DNA of extracellular origin in hematopoietic stem cells. The concept of the possibility of stochastic or targeted changes in the genome of hematopoietic stem cells is formulated based on the discovery of new, previously unknown biological properties of poorly differentiated hematopoietic precursors. The main provisions of the concept are as follows.

View Article and Find Full Text PDF

DNA repair is a most important cellular process that helps maintain the integrity of the genome and is currently considered by researchers as one of the factors determining the maximum lifespan. The central regulator of the DNA repair process is the enzyme poly(ADP-ribose)polymerase 1 (PARP1). PARP1 catalyzes the synthesis of poly(ADP-ribose) polymer (PAR) upon DNA damage using nicotinamide adenine dinucleotide (NAD+) as a substrate.

View Article and Find Full Text PDF

Background: The utilization of PD1 and CTLA4 inhibitors has revolutionized the treatment of malignant melanoma (MM). However, resistance to targeted and immune-checkpoint-based therapies still poses a significant problem.

Objective: Here, we mine large-scale MM proteogenomic data to identify druggable targets and forecast treatment efficacy and resistance.

View Article and Find Full Text PDF

Streptozotocin (STZ) is widely used as a pancreatic beta-cell toxin to induce experimental diabetes in rodents. Strain-dependent variations in STZ-induced diabetes susceptibility have been reported in mice. Differences in STZ-induced diabetes susceptibility are putatively related to pancreatic beta-cell fragility via DNA damage response.

View Article and Find Full Text PDF

Ptosis in human immunodeficiency virus-infected patients under long-term antiretroviral treatment.

Clin Neurol Neurosurg

December 2024

Department of Neurosciences and Mental Health, Unidade Local de Saúde de Santa Maria, Lisbon, Portugal; Faculdade de Medicina-Instituto de Medicina Molecular, Centro de Estudos Egas Moniz, Universidade de Lisboa, Lisbon, Portugal.

Objective: To present cases of ptosis in HIV-1 patients on long-term antiretroviral therapy (ART) and review the existing literature.

Methods: Five HIV-1-positive patients with slowly progressive bilateral ptosis underwent a comprehensive diagnostic evaluation, including imaging studies, neurophysiological testing, muscle biopsy, and genetic analysis. A literature review was conducted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!