Protein S is a cofactor for tissue factor pathway inhibitor (TFPI), accelerating the inhibition of activated factor X (FXa). TFPI Kunitz domain 3 residue Glu226 is essential for enhancement of TFPI by protein S. To investigate the complementary functional interaction site on protein S, we screened 44 protein S point, composite or domain swap variants spanning the whole protein S molecule for their TFPI cofactor function using a thrombin generation assay. Of these variants, two protein S/growth arrest-specific 6 chimeras, with either the whole sex hormone-binding globulin (SHBG)-like domain (Val243-Ser635; chimera III) or the SHBG laminin G-type 1 subunit (Ser283-Val459; chimera I), respectively, substituted by the corresponding domain in growth arrest-specific 6, were unable to enhance TFPI. The importance of the protein S SHBG-like domain (and its laminin G-type 1 subunit) for binding and enhancement of TFPI was confirmed in FXa inhibition assays and using surface plasmon resonance. In addition, protein S bound to C4b binding protein showed greatly reduced enhancement of TFPI-mediated inhibition of FXa compared with free protein S. We show that binding of TFPI to the protein S SHBG-like domain enables TFPI to interact optimally with FXa on a phospholipid membrane.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4064334PMC
http://dx.doi.org/10.1182/blood-2014-01-551812DOI Listing

Publication Analysis

Top Keywords

shbg-like domain
16
protein
13
protein shbg-like
12
tfpi protein
12
tfpi
9
tfpi cofactor
8
cofactor function
8
enhancement tfpi
8
laminin g-type
8
g-type subunit
8

Similar Publications

Background: Protein S (PS) is a natural anticoagulant acting as a cofactor for activated protein C (APC) in the proteolytic inactivation of activated factors V (FVa) and VIII (FVIIIa), but also for tissue factor pathway inhibitor α (TFPIα) in the inhibition of activated factor X (FXa).

Objective: For therapeutic purposes, we aimed at generating single-domain antibodies (sdAbs) that could specifically modulate the APC-cofactor activity of PS in vivo.

Methods: A llama-derived immune library of sdAbs was generated and screened on recombinant human PS by phage display.

View Article and Find Full Text PDF

Aims: Hereditary protein S (PS) deficiency is one of the natural anticoagulant deficiencies causing thrombophilia. We herein described a young male with recurrent deep venous thrombosis, who was diagnosed as type I PS deficiency with compound heterozygous mutations of gene. We aimed to analyse the relationship between the genotype and phenotype detection and investigate the pathological mechanisms of mutations causing PS deficiency.

View Article and Find Full Text PDF

Amino acid residues in the laminin G domains of protein S involved in tissue factor pathway inhibitor interaction.

Thromb Haemost

May 2015

Björn Dahlbäck MD, PhD, Professor of Blood Coagulation Research, Lund University, Department of Translational Medicine, Division of Clinical Chemistry, Wallenberg laboratory, floor 6, University Hospital, Malmö, S-20502 Malmö, Sweden, E-mail:

Protein S functions as a cofactor for tissue factor pathway inhibitor (TFPI) and activated protein C (APC). The sex hormone binding globulin (SHBG)-like region of protein S, consisting of two laminin G-like domains (LG1 and LG2), contains the binding site for C4b-binding protein (C4BP) and TFPI. Furthermore, the LG-domains are essential for the TFPI-cofactor function and for expression of full APC-cofactor function.

View Article and Find Full Text PDF

Protein S is a cofactor for tissue factor pathway inhibitor (TFPI), accelerating the inhibition of activated factor X (FXa). TFPI Kunitz domain 3 residue Glu226 is essential for enhancement of TFPI by protein S. To investigate the complementary functional interaction site on protein S, we screened 44 protein S point, composite or domain swap variants spanning the whole protein S molecule for their TFPI cofactor function using a thrombin generation assay.

View Article and Find Full Text PDF

Protein S (PS) possesses a sex-hormone-binding globulin (SHBG)-like domain in place of the serine-protease domain found in other vitamin K-dependent plasma proteins. This SHBG-like domain is able to bind a complement fraction, C4b-binding protein (C4b-BP). To establish whether the PS SHBG-like domain can fold normally in the absence of other domains, and to obtain information on the specific functions of this region, we expressed the PS SHBG-like domain alone or together with its adjacent domain EGF4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!