Pancreatic β-cell failure mediated by mTORC1 hyperactivity and autophagic impairment.

Diabetes

Division of Medical Chemistry, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan

Published: September 2014

Hyperactivation of the mammalian target of rapamycin complex 1 (mTORC1) in β-cells is usually found as a consequence of increased metabolic load. Although it plays an essential role in β-cell compensatory mechanisms, mTORC1 negatively regulates autophagy. Using a mouse model with β-cell-specific deletion of Tsc2 (βTsc2(-/-)) and, consequently, mTORC1 hyperactivation, we focused on the role that chronic mTORC1 hyperactivation might have on β-cell failure. mTORC1 hyperactivation drove an early increase in β-cell mass that later declined, triggering hyperglycemia. Apoptosis and endoplasmic reticulum stress markers were found in islets of older βTsc2(-/-) mice as well as accumulation of p62/SQSTM1 and an impaired autophagic response. Mitochondrial mass was increased in β-cells of βTsc2(-/-) mice, but mitophagy was also impaired under these circumstances. We provide evidence of β-cell autophagy impairment as a link between mTORC1 hyperactivation and mitochondrial dysfunction that probably contributes to β-cell failure.

Download full-text PDF

Source
http://dx.doi.org/10.2337/db13-0970DOI Listing

Publication Analysis

Top Keywords

mtorc1 hyperactivation
16
β-cell failure
12
βtsc2-/- mice
8
mtorc1
7
hyperactivation
5
β-cell
5
pancreatic β-cell
4
failure mediated
4
mediated mtorc1
4
mtorc1 hyperactivity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!