Hyperactivation of the mammalian target of rapamycin complex 1 (mTORC1) in β-cells is usually found as a consequence of increased metabolic load. Although it plays an essential role in β-cell compensatory mechanisms, mTORC1 negatively regulates autophagy. Using a mouse model with β-cell-specific deletion of Tsc2 (βTsc2(-/-)) and, consequently, mTORC1 hyperactivation, we focused on the role that chronic mTORC1 hyperactivation might have on β-cell failure. mTORC1 hyperactivation drove an early increase in β-cell mass that later declined, triggering hyperglycemia. Apoptosis and endoplasmic reticulum stress markers were found in islets of older βTsc2(-/-) mice as well as accumulation of p62/SQSTM1 and an impaired autophagic response. Mitochondrial mass was increased in β-cells of βTsc2(-/-) mice, but mitophagy was also impaired under these circumstances. We provide evidence of β-cell autophagy impairment as a link between mTORC1 hyperactivation and mitochondrial dysfunction that probably contributes to β-cell failure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2337/db13-0970 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!