As a photocathode for CO2 reduction, zinc-blende zinc telluride (ZnTe) was directly formed on a Zn/ZnO nanowire substrate by a simple dissolution-recrystallization mechanism without any surfactant. With the most negative conduction-band edge among p-type semiconductors, this new photocatalyst showed efficient and stable CO formation in photoelectrochemical CO2 reduction at -0.2--0.7 V versus RHE without a sacrificial reagent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201310461 | DOI Listing |
Dalton Trans
January 2025
Shock Wave Research Laboratory, Department of Physics, Abdul Kalam Research Centre, Sacred Heart College, Tirupattur, affiliated to Thiruvalluvar University, Serkkadu, Tamil Nadu, 635 601, India.
In this study, Zinc Telluride (ZnTe) was subjected to acoustic shock waves with a Mach number of 1.5, transient pressure of 0.59 MPa, and a temperature of 520 K to analyze its stability against shock wave impact.
View Article and Find Full Text PDFBiomed Phys Eng Express
January 2025
State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, People's Republic of China.
The optimal method for three-dimensional thermal imaging within cells involves collecting intracellular temperature responses while simultaneously obtaining corresponding 3D positional information. Current temperature measurement techniques based on the photothermal properties of quantum dots face several limitations, including high cytotoxicity and low fluorescence quantum yields. These issues affect the normal metabolic processes of tumor cells.
View Article and Find Full Text PDFAsia Ocean J Nucl Med Biol
January 2025
Department of Nuclear Medicine, Saitama Medical University Hospital, Saitama, Japan.
Sensors (Basel)
November 2024
Laboratori Nazionali di Frascati, INFN, Via E. Fermi 54, 00044 Frascati, Italy.
The SIDDHARTA-2 collaboration has developed a novel X-ray detection system based on cadmium-zinc-telluride (CZT, CdZnTe), marking the first application of this technology at the DAΦNE electron-positron collider at INFN-LNF. This work aims to demonstrate the stability of the detectors' performance in terms of linearity and resolution over short and long periods, thereby establishing their suitability for precise spectroscopic measurements within a collider environment. A reference calibration spectrum is presented in association with findings from assessments of linearity and resolution stability.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Biomedical Engineering, University of Baghdad, Baghdad 10071, Iraq.
Terahertz waves are nondestructive and non-ionizing to synthetic and natural materials, including polymeric and biological materials. As a result, terahertz-based spectroscopy has emerged as a suitable technique to uncover fundamental molecular mechanisms and material properties in this electromagnetic spectrum regime. In terahertz time-domain spectroscopy (THz-TDS), the material's optical properties are resolved using the raw time-domain signals collected from the sample and air reference data depending on accurate prior knowledge of the sample geometry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!