Chemical profiling of decomposition odour is conducted in the environmental sciences to detect malodourous target sources in air, water or soil. More recently decomposition odour profiling has been employed in the forensic sciences to generate a profile of the volatile organic compounds (VOCs) produced by decomposed remains. The chemical profile of decomposition odour is still being debated with variations in the VOC profile attributed to the sample collection technique, method of chemical analysis, and environment in which decomposition occurred. To date, little consideration has been given to the partitioning of odour between different matrices and the impact this has on developing an accurate VOC profile. The purpose of this research was to investigate the decomposition odour profile surrounding vertebrate carrion to determine how VOCs partition between soil and air. Four pig carcasses (Sus scrofa domesticus L.) were placed on a soil surface to decompose naturally and their odour profile monitored over a period of two months. Corresponding control sites were also monitored to determine the VOC profile of the surrounding environment. Samples were collected from the soil below and the air (headspace) above the decomposed remains using sorbent tubes and analysed using gas chromatography-mass spectrometry. A total of 249 compounds were identified but only 58 compounds were common to both air and soil samples. This study has demonstrated that soil and air samples produce distinct subsets of VOCs that contribute to the overall decomposition odour. Sample collection from only one matrix will reduce the likelihood of detecting the complete spectrum of VOCs, which further confounds the issue of determining a complete and accurate decomposition odour profile. Confirmation of this profile will enhance the performance of cadaver-detection dogs that are tasked with detecting decomposition odour in both soil and air to locate victim remains.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3989314 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0095107 | PLOS |
PLoS One
January 2025
Sensory Circuits and Neurotechnology Laboratory, The Francis Crick Institute, London, United Kingdom.
Odours released by objects in natural environments can contain information about their spatial locations. In particular, the correlation of odour concentration timeseries produced by two spatially separated sources contains information about the distance between the sources. For example, mice are able to distinguish correlated and anti-correlated odour fluctuations at frequencies up to 40 Hz, while insect olfactory receptor neurons can resolve fluctuations exceeding 100 Hz.
View Article and Find Full Text PDFWaste Manag
January 2025
School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China. Electronic address:
Owing to the massive refractory lignocellulose and leachate-organic loads, the stabilization of municipal solid waste (MSW) landfill is often prolonged, resulting in environmental burdens. Herein, various assembled multifunctional microbial inoculums (MMIs) were introduced into the semi-aerobic bioreactor landfill (SABL) to investigate the bioaugmentation impacts. Compared to control (CK) and other MMIs treatments (G1-G3), LD + LT + DM inoculation (G4) significantly increased volatile solids degradation (9.
View Article and Find Full Text PDFFood Res Int
January 2025
School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China. Electronic address:
Chrysanthemi Flos has been consumed as floral tea for centuries, but the effects of stir-frying on its chemical profile, sensory characteristics, and bioactivity remain unclear. This study used untargeted metabolomics, sensory assessment (E-eye, E-nose, E-tongue), and antioxidant activity evaluation to investigate compositional changes and their effects. In the metabolomics analysis, a total of 101 non-volatile and 306 volatile differential metabolites were identified.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Computational Chemistry Laboratory, Institute of Chemistry, University of Brasilia, Brasilia, Brazil.
J Biomol Struct Dyn
November 2024
Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, India.
Understanding the intricate processes underlying olfaction necessitates unraveling the complexities of odorant binding protein's interactions with volatile compounds triggering hygienic behavior in , This study delves into the intricate processes of olfaction by focusing on the interactions between Odorant Binding Protein 4 (AmelOBP4) and volatile compounds associated with hygienic behavior, employing a comprehensive computational approach. Molecular docking analyses reveal detailed binding interactions, emphasizing the significance of hydrophobic interactions and specific amino acid residues in stabilizing AmelOBP4-volatile complexes, notably with 2-nonacosanone (-8.4 kcal/mol) and hexacosyl acetate (-8.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!