Recalcitrant bubbles.

Sci Rep

School of Engineering, University of Edinburgh, Edinburgh EH9 3JL, U.K.

Published: April 2014

We demonstrate that thermocapillary forces may drive bubbles against liquid flow in 'anomalous' mixtures. Unlike 'ordinary' liquids, in which bubbles migrate towards higher temperatures, we have observed vapour bubbles migrating towards lower temperatures, therefore against the flow. This unusual behaviour may be explained by the temperature dependence of surface tension of these binary mixtures. Bubbles migrating towards their equilibrium position follow an exponential trend. They finally settle in a stationary position just 'downstream' of the minimum in surface tension. The exponential trend for bubbles in 'anomalous' mixtures and the linear trend in pure liquids can be explained by a simple model. For larger bubbles, oscillations were observed. These oscillations can be reasonably explained by including an inertial term in the equation of motion (neglected for smaller bubbles).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3989560PMC
http://dx.doi.org/10.1038/srep04727DOI Listing

Publication Analysis

Top Keywords

'anomalous' mixtures
8
bubbles migrating
8
surface tension
8
exponential trend
8
bubbles
7
recalcitrant bubbles
4
bubbles demonstrate
4
demonstrate thermocapillary
4
thermocapillary forces
4
forces drive
4

Similar Publications

RAFT Dispersion Polymerization of 2-Hydroxyethyl Methacrylate in Non-polar Media.

Macromolecules

December 2024

Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.

We report the reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization of 2-hydroxyethyl methacrylate (HEMA) in -dodecane using a poly(lauryl methacrylate) (PLMA) precursor at 90 °C. This formulation is an example of polymerization-induced self-assembly (PISA), which leads to the formation of a colloidal dispersion of spherical PLMA-PHEMA nanoparticles at 10-20% w/w solids. PISA syntheses involving polar monomers in non-polar media have been previously reported but this particular system offers some unexpected and interesting challenges in terms of both synthesis and characterization.

View Article and Find Full Text PDF

Tunable Mirror-Symmetric Type-III Ising Superconductivity in Atomically-Thin Natural Van der Waals Heterostructures.

Adv Mater

December 2024

School of Physics, and State Key Laboratory of Silicon Materials and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China.

Article Synopsis
  • Van der Waals (vdW) crystals with strong spin-orbit coupling are key for discovering unique 2D superconductors, where new pairing states arise from the combination of various factors like SOC and crystal structure.
  • The study highlights a mirror-symmetry protected Ising pairing state in a heterostructure of SnSe and TaSe, where the arrangement of the lattice helps minimize interference from certain pairing mechanisms.
  • The findings indicate that these vdW heterostructures can enhance the critical temperature under specific magnetic fields, which does not occur in other multilayer configurations due to a loss of mirror symmetry.
View Article and Find Full Text PDF

Anomalous pressure-density relations and speed of sound in bubbly water systems.

J Chem Phys

November 2024

Department of Chemistry and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, USA.

The speed of sound in bubbly water is an important parameter in the wave equations governing pressure-density relations for turbulent multi-phase flow simulations. Recent molecular simulation results indicate that, for bubbles that are thermodynamically stable at finite volume conditions, the derivative of total pressure P with density ρ has a negative sign, complicating the interpretation of the speed of sound. We show that such a negative compressibility is thermodynamically consistent in a single-component two-phase model at finite volume, and identify an empirically derived equation of state to illustrate that this observation is not an artifact of small simulation length scales.

View Article and Find Full Text PDF

Anomalous mass diffusion in a binary mixture and Rayleigh-Bénard instability.

Phys Rev E

October 2024

Department of Mathematics, University of Durham, DH1 3LE Durham, United Kingdom.

The onset of the Rayleigh-Bénard instability in a horizontal fluid layer is investigated by assuming the fluid as a binary mixture and the concentration buoyancy as the driving force. The focus of this study is on the anomalous diffusion phenomenology emerging when the mean squared displacement of molecules in the diffusive random walk is not proportional to time, as in the usual Fick's diffusion, but it is proportional to a power of time. The power-law model of anomalous diffusion identifies subdiffusion when the power-law index is smaller than unity, while it describes superdiffusion when the power-law index is larger than unity.

View Article and Find Full Text PDF

In recent years, active Brownian particles have emerged as a prominent model system for comprehending the behaviors of active matter, wherein particles demonstrate self-propelled motion by harnessing energy from the surrounding environment. A fundamental objective of studying active matter is to elucidate the physical mechanisms underlying its collective behaviors. Drawing inspiration from advancements in molecular glasses, our study unveils a low-energy "flat mode" within the transverse spectrum of active Brownian vibrators-a nearly two-dimensional, bidisperse granular assembly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!