Strong inhibition of NF-κB signaling in the epidermis results in spontaneous skin inflammation in mice and men. As there is evidence for linkage between polymorphisms within the NF-κB signaling pathway and human inflammatory skin phenotypes, we asked whether partial functional inhibition of NF-κB signaling in epidermal keratinocytes can modulate clinically relevant skin inflammation. We therefore mutated rela specifically in the epidermis of mice (RelA(E-MUT) mice). These mice show no inflammatory phenotype. Induction of contact allergy, but not croton oil-induced irritant dermatitis, resulted in stronger ear swelling and increased epidermal thickness in RelA(E-MUT) mice. Both contact allergen and croton oil treatment led to increased expression of calgranulins A and B (S100A8/A9) in RelA(E-MUT) mice. Epidermal hyperproliferation in RelA(E-MUT) mice was non-cell autonomous as cultured primary epidermal keratinocytes from RelA(E-MUT) mice showed reduced proliferation compared with controls. These results demonstrate that epidermal RelA specifically regulates delayed-type hypersensitivity-induced skin inflammation. In addition, we describe here an essential but nonspecific function of RelA in the protection of epidermal keratinocytes from apoptosis. Our study identifies functions of NF-κB signaling in the epidermis and corroborates a specific role of epidermal keratinocytes in the regulation of skin inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1038/jid.2014.193DOI Listing

Publication Analysis

Top Keywords

relae-mut mice
20
nf-κb signaling
16
skin inflammation
16
epidermal keratinocytes
16
epidermal
8
epidermal rela
8
inhibition nf-κb
8
signaling epidermis
8
mice
8
skin
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!